Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Signal processing Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Signal processing Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Signal processing Mathematical models"
Rogozinsky, G., M. Chesnokov und A. Kutlyiarova. „Some New Mathematical Models of Synthesized Sound Signals“. Proceedings of Telecommunication Universities 8, Nr. 2 (30.06.2022): 76–81. http://dx.doi.org/10.31854/1813-324x-2022-8-2-76-81.
Der volle Inhalt der QuelleMonakov, A. A., und A. A. Tarasenkov. „Comparative Analysis of Mathematical Models of Tracking Radio Altimeters“. Journal of the Russian Universities. Radioelectronics 25, Nr. 4 (29.09.2022): 72–80. http://dx.doi.org/10.32603/1993-8985-2022-25-4-72-80.
Der volle Inhalt der QuelleQu, Qiuhui. „Application of MATLAB in signal and system“. SHS Web of Conferences 145 (2022): 01029. http://dx.doi.org/10.1051/shsconf/202214501029.
Der volle Inhalt der QuelleTague, John A., und Kerry D. Schutz. „Seismic transient deconvolution with model‐based signal processing“. GEOPHYSICS 62, Nr. 4 (Juli 1997): 1321–30. http://dx.doi.org/10.1190/1.1444234.
Der volle Inhalt der QuelleSharko, Artem. „MODELS AND METHODS OF PROCESSING OF INFORMATION ON LOADS OF ACOUSTIC SIGNALS IN TECHNICAL DIAGNOSTIC SYSTEMS“. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska 8, Nr. 3 (25.09.2018): 15–18. http://dx.doi.org/10.5604/01.3001.0012.5276.
Der volle Inhalt der QuelleLavanya, S., S. Prabakaran und N. Ashok Kumar. „A Deep Learning Technique for Detecting High Impedance Faults in Medium Voltage Distribution Networks“. Engineering, Technology & Applied Science Research 12, Nr. 6 (01.12.2022): 9477–82. http://dx.doi.org/10.48084/etasr.5288.
Der volle Inhalt der QuelleBeardah, C. C., und R. M. Thomas. „Two mathematical models of unconfined detonation and their numerical solution“. Circuits, Systems, and Signal Processing 13, Nr. 2-3 (Juni 1994): 155–65. http://dx.doi.org/10.1007/bf01188103.
Der volle Inhalt der QuelleLomakin, A., D. Pantenkov und V. Sokolov. „Mathematical Models of Satellite Communication Systems with Unmanned Aerial Vehicles and Counter-Means of Radio Control. Part 2“. Proceedings of Telecommunication Universities 5, Nr. 4 (2019): 37–48. http://dx.doi.org/10.31854/1813-324x-2019-5-4-37-48.
Der volle Inhalt der QuelleAl-Suod, Mahmoud, Abdullah Eial Awwad, Alaa Al-Quteimat und Oleksandr Ushkarenko. „Method for describing signal conversion processes in analog electronic systems“. Bulletin of Electrical Engineering and Informatics 11, Nr. 1 (01.02.2022): 82–92. http://dx.doi.org/10.11591/eei.v11i1.3545.
Der volle Inhalt der QuelleMarano, Stefano, und Marco Marano. „Frontiers in hemodialysis: Solutions and implications of mathematical models for bicarbonate restoring“. Biomedical Signal Processing and Control 52 (Juli 2019): 321–29. http://dx.doi.org/10.1016/j.bspc.2019.02.029.
Der volle Inhalt der QuelleDissertationen zum Thema "Signal processing Mathematical models"
Fabrizio, Giuseppe Aureliano. „Space-time characterisation and adaptive processing of ionospherically-propagated HF signals /“. Title page, table of contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phf129.pdf.
Der volle Inhalt der QuelleCai, Qin. „Detecting Chaotic Signals with Nonlinear Models“. PDXScholar, 1993. https://pdxscholar.library.pdx.edu/open_access_etds/4564.
Der volle Inhalt der QuelleWebb, M. R. „Millimetre wave quasi-optical signal processing systems“. Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/2827.
Der volle Inhalt der QuelleZhang, Zhiguo, und 張治國. „On bandwidth and scale selection in processing of time-varying signalswith applications“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39707465.
Der volle Inhalt der QuelleSelén, Yngve. „Model selection /“. Uppsala : Univ. : Dept. of Information Technology, Univ, 2004. http://www.it.uu.se/research/reports/lic/2004-003/.
Der volle Inhalt der QuelleStoffell, Kevin M. „Implementation of a Quadrature Mirror Filter Bank on an SRC reconfigurable computer for real-time signal processing“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FStoffell.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Douglas J. Fouts. "September 2006." Includes bibliographical references (p. 111-112). Also available in print.
洪觀宇 und Roy Hung. „Time domain analysis and synthesis of cello tones based on perceptual quality and playing gestures“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215348.
Der volle Inhalt der QuelleLi, Xiao, und 李驍. „Channel estimation and timing synchronization in cooperative communication systems“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841835.
Der volle Inhalt der QuelleSadeghi, Parastoo School of Electrical Engineering And Telecommunications UNSW. „Modelling, information capacity, and estimation of time-varying channels in mobile communication systems“. Awarded by:University of New South Wales. School of Electrical Engineering And Telecommunications, 2006. http://handle.unsw.edu.au/1959.4/32310.
Der volle Inhalt der QuelleYang, Yang. „2D signal processing: efficient models for spectral compressive sensing & single image reflection suppression“. Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6667.
Der volle Inhalt der QuelleBücher zum Thema "Signal processing Mathematical models"
Solo, Victor. Adaptive signal processing algorithms: Stability and performance. Englewood Cliffs, N.J: Prentice Hall, 1995.
Den vollen Inhalt der Quelle findenSignals and systems in biomedical engineering: Signal processing and physiological systems modeling. New York: Kluwer Academic/Plenum Publishers, 2000.
Den vollen Inhalt der Quelle findenGromakov, I︠U︡ A. Optimalʹnai︠a︡ obrabotka radiosignalov bolʹshimi sistemami. Moskva: Ėko-Trendz, 2004.
Den vollen Inhalt der Quelle findenStatistical digital signal processing and modeling. New York: John Wiley & Sons, 1996.
Den vollen Inhalt der Quelle findenNumbers & notes: An introduction to musical signal processing. Portland, Ore: PSI Press, 2012.
Den vollen Inhalt der Quelle findenUnited States. Advanced Research Projects Agency., Hrsg. An optical signal processing model for the interferometric fiber optic gyro. Santa Monica, CA: RAND, 1995.
Den vollen Inhalt der Quelle findenHall, David L. Mathematical techniques in multisensor data fusion. Boston: Artech House, 1992.
Den vollen Inhalt der Quelle findenL, Hall David. Mathematical techniques in multisensor data fusion. Boston: Artech House, 1992.
Den vollen Inhalt der Quelle findenSignal processing for neuroscientists: Introduction to the analysis of physiological signals. Amsterdam: Elsevier/Academic Press, 2007.
Den vollen Inhalt der Quelle findenL, Hall David. Mathematical techniques in multi-sensor data fusion. 2. Aufl. Boston: Artech House, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Signal processing Mathematical models"
Butler, John L., und Charles H. Sherman. „Mathematical Models for Acoustic Radiation“. In Modern Acoustics and Signal Processing, 555–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39044-4_11.
Der volle Inhalt der QuelleGamba, Jonah. „Radar Waveforms and Their Mathematical Models“. In Radar Signal Processing for Autonomous Driving, 37–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9193-4_4.
Der volle Inhalt der QuelleAbraham, Douglas A. „Mathematical Statistics“. In Modern Acoustics and Signal Processing, 251–305. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92983-5_5.
Der volle Inhalt der QuelleFuhrmann, Paul A., und Uwe Helmke. „On the Use of Functional Models in Model Reduction“. In Perspectives in Mathematical System Theory, Control, and Signal Processing, 177–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-93918-4_16.
Der volle Inhalt der QuelleGopi, E. S. „Mathematical Model of Time Varying Wireless Channel Model“. In Digital Signal Processing for Wireless Communication using Matlab, 55–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82036-7_2.
Der volle Inhalt der QuelleBrockett, Roger W. „Markov Models for Coherent Signals: Extrapolation in the Frequency Domain“. In Perspectives in Mathematical System Theory, Control, and Signal Processing, 299–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-93918-4_27.
Der volle Inhalt der QuelleGopi, E. S. „Mathematical Model of the Time-Varying Wireless Channel“. In Digital Signal Processing for Wireless Communication using Matlab, 1–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20651-6_1.
Der volle Inhalt der QuelleStawiaski, Jean. „Optimal Path: Theory and Models for Vessel Segmentation“. In Mathematical Morphology and Its Applications to Image and Signal Processing, 417–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21569-8_36.
Der volle Inhalt der QuelleJeulin, Dominique, und Pascal Laurenge. „Probabilistic Model of Rough Surfaces Obtained by Electro-Erosion“. In Mathematical Morphology and its Applications to Image and Signal Processing, 289–96. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0469-2_33.
Der volle Inhalt der QuelleYang, Lei, Liang Li, Chie Muraki Asano und Akira Asano. „Primitive and Grain Estimation Using Flexible Magnification for a Morphological Texture Model“. In Mathematical Morphology and Its Applications to Image and Signal Processing, 190–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21569-8_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Signal processing Mathematical models"
„Session MA7b Mathematical Models for Image Processing“. In Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004. IEEE, 2004. http://dx.doi.org/10.1109/acssc.2004.1399104.
Der volle Inhalt der QuelleBouchoffra, D., und F. Ykhlef. „Mathematical models for machine learning and pattern recognition“. In 2013 8th InternationalWorkshop on Systems, Signal Processing and their Applications (WoSSPA). IEEE, 2013. http://dx.doi.org/10.1109/wosspa.2013.6602331.
Der volle Inhalt der QuelleRohde, Steve M., William J. Williams und Mitchell M. Rohde. „Application of Advanced Signal Processing Methods to Automotive Systems Testing“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59535.
Der volle Inhalt der QuelleAkman, Caglar, Okan Demir und Tolga Sonmez. „Covid-19 SEIQR Spread Mathematical Model“. In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE, 2021. http://dx.doi.org/10.1109/siu53274.2021.9477975.
Der volle Inhalt der QuelleWu, Feilong, Wenjie Wang, Hui-Ming Wang und Qinye Yin. „A unified mathematical model for spatial scrambling based secure wireless transmission and its wiretap method“. In Signal Processing (WCSP 2011). IEEE, 2011. http://dx.doi.org/10.1109/wcsp.2011.6096860.
Der volle Inhalt der QuelleSimsek, Mustafa, Ibrahim Delibalta, Lemi Baruh und Suleyman S. Kozat. „Mathematical model of causal inference in Social Networks“. In 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7495952.
Der volle Inhalt der QuelleAnaloui, Morteza, und Shahram Jamali. „TCP fairness enhancement through a mathematical parametric model“. In Signal Processing with Special Track on Biomedical Engineering (CCSP). IEEE, 2005. http://dx.doi.org/10.1109/ccsp.2005.4977166.
Der volle Inhalt der QuelleArtyushenko, Vladimir Mikhaylovich, und Vladimir Ivanovich Volovach. „The Mathematical Models of Transformation non-Gaussian Random Processes in the non-Linear non-Inertial Elements“. In 2022 24th International Conference on Digital Signal Processing and its Applications (DSPA). IEEE, 2022. http://dx.doi.org/10.1109/dspa53304.2022.9790780.
Der volle Inhalt der QuelleMoghaddam, Mohsen Ebrahimi. „A Mathematical Model to Estimate Out of Focus Blur“. In 2007 5th International Symposium on Image and Signal Processing and Analysis. IEEE, 2007. http://dx.doi.org/10.1109/ispa.2007.4383705.
Der volle Inhalt der Quelle„A STUDY OF STOCHASTIC RESONANCE AS A MATHEMATICAL MODEL OF ELECTROGASTROGRAM“. In International Conference on Bio-inspired Systems and Signal Processing. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003159504500453.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Signal processing Mathematical models"
Luo, Zhi-Quan. Mathematical Analysis of Signal Processing Capabilities of Wireless Networks. Fort Belvoir, VA: Defense Technical Information Center, Januar 2009. http://dx.doi.org/10.21236/ada499991.
Der volle Inhalt der QuelleBaraniuk, Richard G. Multiscale Statistical Models for Signal and Image Processing. Fort Belvoir, VA: Defense Technical Information Center, Juni 2004. http://dx.doi.org/10.21236/ada425177.
Der volle Inhalt der QuelleShubitidze, Fridon. A Complex Approach to UXO Discrimination: Combining Advanced EMI Forward Models and Statistical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada578937.
Der volle Inhalt der QuelleBurnett, G. C. Damage Detection and Identification of Finite Element Models Using State-Space Based Signal Processing a Summation of Work Completed at the Lawrence Livermore National Laboratory February 1999 to April 2000. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/793960.
Der volle Inhalt der QuelleTanny, Josef, Gabriel Katul, Shabtai Cohen und Meir Teitel. Micrometeorological methods for inferring whole canopy evapotranspiration in large agricultural structures: measurements and modeling. United States Department of Agriculture, Oktober 2015. http://dx.doi.org/10.32747/2015.7594402.bard.
Der volle Inhalt der QuelleModlo, Yevhenii O., Serhiy O. Semerikov, Stanislav L. Bondarevskyi, Stanislav T. Tolmachev, Oksana M. Markova und Pavlo P. Nechypurenko. Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], Februar 2020. http://dx.doi.org/10.31812/123456789/3677.
Der volle Inhalt der QuelleAlchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li und A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, November 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Der volle Inhalt der Quelle