Auswahl der wissenschaftlichen Literatur zum Thema „Signal processing applications“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Signal processing applications" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Signal processing applications"

1

Jin Chen, Huai Li, Kaihua Sun und B. Kim. „Signal processing applications - How will bioinformatics impact signal processing research?“ IEEE Signal Processing Magazine 20, Nr. 6 (November 2003): 16–26. http://dx.doi.org/10.1109/msp.2003.1253551.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bourennane, Salah, Julien Marot, Caroline Fossati, Ahmed Bouridane und Klaus Spinnler. „Multidimensional Signal Processing and Applications“. Scientific World Journal 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/365126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cruz, J. „Applications of digital signal processing“. IEEE Transactions on Acoustics, Speech, and Signal Processing 33, Nr. 2 (April 1985): 487. http://dx.doi.org/10.1109/tassp.1985.1164563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Duarte Ortigueira, Manuel, und J. A. Tenreiro Machado. „Fractional signal processing and applications“. Signal Processing 83, Nr. 11 (November 2003): 2285–86. http://dx.doi.org/10.1016/s0165-1684(03)00181-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ortigueira, Manuel D., Clara M. Ionescu, J. Tenreiro Machado und Juan J. Trujillo. „Fractional signal processing and applications“. Signal Processing 107 (Februar 2015): 197. http://dx.doi.org/10.1016/j.sigpro.2014.10.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tibbitts, J., und Yibin Lu. „Forensic applications of signal processing“. IEEE Signal Processing Magazine 26, Nr. 2 (März 2009): 104–11. http://dx.doi.org/10.1109/msp.2008.931099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Hanbo. „Compressed Sensing: Theory and Applications“. Journal of Physics: Conference Series 2419, Nr. 1 (01.01.2023): 012042. http://dx.doi.org/10.1088/1742-6596/2419/1/012042.

Der volle Inhalt der Quelle
Annotation:
Abstract Compressed sensing is a new technique for solving underdetermined linear systems. Because of its good performance, it has been widely used in academia. It is applied in electrical engineering to recover sparse signals, especially in signal processing. This technique exploits the signal’s sparse nature, allowing the original signals to recover from fewer samples. This paper discusses the fundamentals of compressed sensing theory, the research progress in compressed sensing signal processing, and the applications of compressed sensing theory in nuclear magnetic resonance imaging and seismic exploration acquisition. Compressed sensing allows for the digitization of analogue data with inexpensive sensors and lowers the associated costs of processing, storage, and transmission. Behind its sophisticated mathematical expression, compressed sensing theory contains a subtle idea. Compressed sensing is a novel theory that is an ideal complement and improvement to conventional signal processing. It is a theory with a high vitality level, and its research outcomes may substantially influence signal processing and other fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kandle. „A Systolic Signal Processor for Signal-Processing Applications“. Computer 20, Nr. 7 (Juli 1987): 94–95. http://dx.doi.org/10.1109/mc.1987.1663626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sinha, Pankaj Kumar, und Preetha Sharan. „Multiplexer Based Multiplications for Signal Processing Applications“. Indonesian Journal of Electrical Engineering and Computer Science 9, Nr. 3 (01.03.2018): 583. http://dx.doi.org/10.11591/ijeecs.v9.i3.pp583-586.

Der volle Inhalt der Quelle
Annotation:
<p>In signal processing, Filter is a device that removes the unwanted signals. In any electronic circuits, Filters are widely used in the fundamental hands on tool. The basic function of the filter is to selectively allow the desired signal to pass through and /or control the undesired signal based on the frequency. A signal processing filter satisfies a set of requirements which are realization and improvement of the filter. A filter system consists of an analog to digital converter is used to sample the input signal, traced by a microprocessor and some components such as memory to store the data and filter coefficients. Filters can easily be designed to be “linear phase” and it is easy to implement. In this paper, the birecoder multiplier (BM) is designed in terms of VLSI design environment. The proposed multiplier is implemented by using VHDL language and Xilinx ISE for synthesis. The multiplier is mainly used for image processing applications as well as signal processing applications.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Volić, Ismar. „Topological Methods in Signal Processing“. B&H Electrical Engineering 14, s1 (01.10.2020): 14–25. http://dx.doi.org/10.2478/bhee-2020-0002.

Der volle Inhalt der Quelle
Annotation:
Abstract This article gives an overview of the applications of algebraic topology methods in signal processing. We explain how the notions and invariants such as (co)chain complexes and (co)homology of simplicial complexes can be used to gain insight into higher-order interactions of signals. The discussion begins with some basic ideas in classical circuits, continues with signals over graphs and simplicial complexes, and culminates with an overview of sheaf theory and the connections between sheaf cohomology and signal processing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Signal processing applications"

1

Gudmundson, Erik. „Signal Processing for Spectroscopic Applications“. Doctoral thesis, Uppsala universitet, Avdelningen för systemteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120194.

Der volle Inhalt der Quelle
Annotation:
Spectroscopic techniques allow for studies of materials and organisms on the atomic and molecular level. Examples of such techniques are nuclear magnetic resonance (NMR) spectroscopy—one of the principal techniques to obtain physical, chemical, electronic and structural information about molecules—and magnetic resonance imaging (MRI)—an important medical imaging technique for, e.g., visualization of the internal structure of the human body. The less well-known spectroscopic technique of nuclear quadrupole resonance (NQR) is related to NMR and MRI but with the difference that no external magnetic field is needed. NQR has found applications in, e.g., detection of explosives and narcotics. The first part of this thesis is focused on detection and identification of solid and liquid explosives using both NQR and NMR data. Methods allowing for uncertainties in the assumed signal amplitudes are proposed, as well as methods for estimation of model parameters that allow for non-uniform sampling of the data. The second part treats two medical applications. Firstly, new, fast methods for parameter estimation in MRI data are presented. MRI can be used for, e.g., the diagnosis of anomalies in the skin or in the brain. The presented methods allow for a significant decrease in computational complexity without loss in performance. Secondly, the estimation of blood flow velo-city using medical ultrasound scanners is addressed. Information about anomalies in the blood flow dynamics is an important tool for the diagnosis of, for example, stenosis and atherosclerosis. The presented methods make no assumption on the sampling schemes, allowing for duplex mode transmissions where B-mode images are interleaved with the Doppler emissions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhao, Wentao. „Genomic applications of statistical signal processing“. [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2952.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Xu, Luzhou. „Growth curve models in signal processing applications“. [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0015020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ko, Ming-Yung. „Integrated software synthesis for signal processing applications“. College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3459.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.) -- University of Maryland, College Park, 2006.
Thesis research directed by: Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peterson, Krystal, Samuel Richter, Adam Schafer, Steve Grant und Kurt Kosbar. „DISTRIBUTED COMPUTING PROCESSOR FOR SIGNAL PROCESSING APPLICATIONS“. International Foundation for Telemetering, 2016. http://hdl.handle.net/10150/624191.

Der volle Inhalt der Quelle
Annotation:
Many signal processing, data analysis and graphical user interface algorithms are computationally intensive. This paper investigates a method of off-loading some of the calculations to remotely located processors. Inexpensive, commercial off the shelf processors are used to perform operations such as fast Fourier transforms and other numerically intensive algorithms. The data is passed to the processors, and results collected, using conventional network interfaces such as TCP/IP. This allows the processors to be located at any location, and also allows potentially large caches of processors to be shared between multiple applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Naulleau, Patrick. „Optical signal processing and real world applications /“. Online version of thesis, 1993. http://hdl.handle.net/1850/12136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ghaderi, Foad. „Signal processing techniques for extracting signals with periodic structure : applications to biomedical signals“. Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/55183/.

Der volle Inhalt der Quelle
Annotation:
In this dissertation some advanced methods for extracting sources from single and multichannel data are developed and utilized in biomedical applications. It is assumed that the sources of interest have periodic structure and therefore, the periodicity is exploited in various forms. The proposed methods can even be used for the cases where the signals have hidden periodicities, i.e., the periodic behaviour is not detectable from their time representation or even Fourier transform of the signal. For the case of single channel recordings a method based on singular spectrum anal ysis (SSA) of the signal is proposed. The proposed method is utilized in localizing heart sounds in respiratory signals, which is an essential pre-processing step in most of the heart sound cancellation methods. Artificially mixed and real respiratory signals are used for evaluating the method. It is shown that the performance of the proposed method is superior to those of the other methods in terms of false detection. More over, the execution time is significantly lower than that of the method ranked second in performance. For multichannel data, the problem is tackled using two approaches. First, it is assumed that the sources are periodic and the statistical characteristics of periodic sources are exploited in developing a method to effectively choose the appropriate delays in which the diagonalization takes place. In the second approach it is assumed that the sources of interest are cyclostationary. Necessary and sufficient conditions for extractability of the sources are mathematically proved and the extraction algorithms are proposed. Ballistocardiogram (BCG) artifact is considered as the sum of a number of independent cyclostationary components having the same cycle frequency. The proposed method, called cyclostationary source extraction (CSE), is able to extract these components without much destructive effect on the background electroencephalogram (EEG)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Auyeung, Cheung. „Optimal constraint-based signal restoration and its applications“. Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15785.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kuchler, Ryan J. „Theory of multirate statistical signal processing and applications“. Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2005. http://library.nps.navy.mil/uhtbin/hyperion/05Sep%5FKuchler%5FPhD.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liu, Haibo. „SEED devices used in optical signal processing applications“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq25657.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Signal processing applications"

1

Digital signal processing: Fundamentals and applications. Amsterdam: Academic Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

William, Walker, Hrsg. Digital Signal Processing and Applications. 2. Aufl. San Diego: Newnes [Imprint], 2004.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Brook, D. Signal processing: Principles and applications. London: E. Arnold, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Alexander, S. Thomas. Adaptive signal processing: Theoryand applications. New York: Springer-Verlag, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Antonia, Papandreou-Suppappola, Hrsg. Applications in time-frequency signal processing. Boca Raton: CRC Press, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Black, J. L., Ph.D. und Ledwidge T. J, Hrsg. Signal processing for industrial diagnostics. Chichester: Wiley, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Li, Jian, Robert Hummel, Petre Stoica und Edmund G. Zelnio, Hrsg. Radar Signal Processing and Its Applications. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-6342-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jian, Li, Hrsg. Radar signal processing and its applications. Boston: Kluwer Academic Publishers, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Binh, Le Nguyen. Photonic signal processing: Techniques and applications. Boca Raton, Fla: CRC Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Das, Pankaj K. Acousto-optic signal processing: Fundamentals & applications. Boston: Artech House, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Signal processing applications"

1

Plataniotis, Konstantinos N., und Anastasios N. Venetsanopoulos. „Emerging Applications“. In Digital Signal Processing, 329–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04186-4_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhang, Fuxue, Wei Zhang und Guosheng Wang. „Signal Processing“. In Non-driven Micromechanical Gyroscopes and Their Applications, 285–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54045-9_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ahmad, Khalil, und Abdullah. „Applications in Signal Processing“. In Forum for Interdisciplinary Mathematics, 131–201. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0268-8_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Floyd, Robert W. „Biosonar Signal Processing Applications“. In Animal Sonar, 773–83. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7493-0_81.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tobin, Paul. „Digital Signal Processing Applications“. In PSpice for Digital Signal Processing, 89–107. Cham: Springer International Publishing, 2007. http://dx.doi.org/10.1007/978-3-031-79767-5_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Singh, Anuj Kumar, und Ankit Garg. „Applications of Signal Processing“. In Machine Learning in Signal Processing, 73–95. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003107026-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Apte, Shaila Dinkar. „Applications of Random Signal Processing“. In Random Signal Processing, 415–30. Boca Raton : CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315155357-10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Alexander, S. Thomas. „Applications of the LMS Algorithm“. In Adaptive Signal Processing, 87–98. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4978-8_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Richter, Michael M., Sheuli Paul, Veton Këpuska und Marius Silaghi. „Signal Processing Background“. In Signal Processing and Machine Learning with Applications, 39–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-45372-9_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Richter, Michael M., Sheuli Paul, Veton Këpuska und Marius Silaghi. „Adaptive Signal Processing“. In Signal Processing and Machine Learning with Applications, 131–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-45372-9_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Signal processing applications"

1

„Signal processing and applications“. In 2014 24th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, 2014. http://dx.doi.org/10.1109/radioelek.2014.6828465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kachru, R. „Stimulated Echo Signal Processing“. In Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/shbl.1992.tha3.

Der volle Inhalt der Quelle
Annotation:
High-speed signal processing is essential in many applications where large amounts of analog or digital data need to be analyzed and processed in real time. The existing techniques, however, suffer from either very limited capacity for storing reference signals or the lack of a rapid reprogramming capability, both of which are of vital importance in high-speed signal processing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

„ISETC 2018 Adaptive Signal Processing and Digital Signal Processing Applications“. In 2018 International Symposium on Electronics and Telecommunications (ISETC). IEEE, 2018. http://dx.doi.org/10.1109/isetc.2018.8584030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sarkar, Tapan K. „Application of signal processing algorithms in microwave applications“. In 26th European Microwave Conference, 1996. IEEE, 1996. http://dx.doi.org/10.1109/euma.1996.337614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Buddha, S., H. Braun, V. Krishnan, C. Tepedelenlioglu, A. Spanias, T. Yeider und T. Takehara. „Signal processing for photovoltaic applications“. In 2012 IEEE International Conference on Emerging Signal Processing Applications (ESPA 2012). IEEE, 2012. http://dx.doi.org/10.1109/espa.2012.6152459.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kurschl, Werner, Stefan Mitsch und Johannes Schoenboeck. „Modeling Distributed Signal Processing Applications“. In Implantable Body Sensor Networks Conference (BSN). IEEE, 2009. http://dx.doi.org/10.1109/bsn.2009.20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Frankenstein, B., K. J. Froehlich, D. Hentschel und G. Reppe. „Microsystem for signal processing applications“. In Nondestructive Evaulation for Health Monitoring and Diagnostics, herausgegeben von Norbert Meyendorf, George Y. Baaklini und Bernd Michel. SPIE, 2005. http://dx.doi.org/10.1117/12.602108.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Azghani, Masoumeh, und Farokh Marvasti. „Applications of sparse signal processing“. In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2016. http://dx.doi.org/10.1109/globalsip.2016.7906061.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dantas, Pierre V., Celso B. Carvalho und Waldir S. S. Junior. „Turning Digital Signal Processing into Graph Signal Processing: Overview and Applications“. In 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). IEEE, 2020. http://dx.doi.org/10.1109/icce-taiwan49838.2020.9258083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Andonovic, Ivan, Brian Culshaw und Mohammed Shabeer. „Fibre Optic Signal Processing“. In Optical Fibers and Their Applications V, herausgegeben von Ryszard S. Romaniuk und Mieczyslaw Szustakowski. SPIE, 1990. http://dx.doi.org/10.1117/12.952941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Signal processing applications"

1

Zakhor, Avideh. Representation Issues in Signal Processing Applications. Fort Belvoir, VA: Defense Technical Information Center, Juni 1995. http://dx.doi.org/10.21236/ada295921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zakhor, Avideh. Representation Issues in Signal Processing Applications. Fort Belvoir, VA: Defense Technical Information Center, Juni 1996. http://dx.doi.org/10.21236/ada311599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Warde, Cardinal. Thin-Film Optics for Signal Processing Applications. Fort Belvoir, VA: Defense Technical Information Center, Januar 1989. http://dx.doi.org/10.21236/ada205141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Biglieri, Ezio, und Michele Elia. Applications of Signal Processing in Digital Communications. Fort Belvoir, VA: Defense Technical Information Center, Januar 1987. http://dx.doi.org/10.21236/ada190420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Elia, Michele. Applications of Signal Processing in Digital Communications. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada190422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tran, Merry. Applications of Digital Signal Processing with Cardiac Pacemakers. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Moore, Frank, Brendan Babb, Steven Becke, Heather Koyuk, Earl Lamson, Wedge III und Christopher. Genetic Algorithms Evolve Optimized Transforms for Signal Processing Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada437529.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

May, Marvin, Alison Brown und Barry Tanju. Applications of Digital Storage Receivers for Enhanced Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada444472.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Casey, Stephen D. Multichannel Deconvolution with Applications to Signal and Image Processing. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1995. http://dx.doi.org/10.21236/ada303433.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kailath, Thomas. Systematic Methods for Design of VLSI Signal Processing Arrays for Communications Applications. Fort Belvoir, VA: Defense Technical Information Center, Juli 1989. http://dx.doi.org/10.21236/ada293120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie