Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Signal designer“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Signal designer" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Signal designer"
Jones, E. Yvonne. „Designer protein delivers signal of choice“. Nature 565, Nr. 7738 (Januar 2019): 165–66. http://dx.doi.org/10.1038/d41586-018-07883-z.
Der volle Inhalt der QuelleBradley, Robert W., und Baojun Wang. „Designer cell signal processing circuits for biotechnology“. New Biotechnology 32, Nr. 6 (Dezember 2015): 635–43. http://dx.doi.org/10.1016/j.nbt.2014.12.009.
Der volle Inhalt der QuelleTaneva, Ina. „Information Design“. American Economic Journal: Microeconomics 11, Nr. 4 (01.11.2019): 151–85. http://dx.doi.org/10.1257/mic.20170351.
Der volle Inhalt der QuelleThiel, Gerald, Anke Kaufmann und Oliver G. Rössler. „G-protein-coupled designer receptors – new chemical-genetic tools for signal transduction research“. Biological Chemistry 394, Nr. 12 (01.12.2013): 1615–22. http://dx.doi.org/10.1515/hsz-2013-0164.
Der volle Inhalt der QuelleRawski, Mariusz, Bogdan Falkowski und Tadeusz Łuba. „Digital signal processing designing for FPGA architectures“. Facta universitatis - series: Electronics and Energetics 20, Nr. 3 (2007): 437–59. http://dx.doi.org/10.2298/fuee0703437r.
Der volle Inhalt der QuellePei, Ying, Sarah C. Rogan, Feng Yan und Bryan L. Roth. „Engineered GPCRs as Tools to Modulate Signal Transduction“. Physiology 23, Nr. 6 (Dezember 2008): 313–21. http://dx.doi.org/10.1152/physiol.00025.2008.
Der volle Inhalt der QuelleJarrah, Amin, und Mohsin M. Jamali. „Reconfigurable FPGA/GPU-Based Architecture of Block Compressive Sampling Matching Pursuit Algorithm“. Journal of Circuits, Systems and Computers 24, Nr. 04 (04.03.2015): 1550055. http://dx.doi.org/10.1142/s0218126615500553.
Der volle Inhalt der QuelleYu, Sunkyu, Xianji Piao, Jiho Hong und Namkyoo Park. „Metadisorder for designer light in random systems“. Science Advances 2, Nr. 10 (Oktober 2016): e1501851. http://dx.doi.org/10.1126/sciadv.1501851.
Der volle Inhalt der QuelleAseeri, Mohammed, Waleed Alomar, Hamad Alotaibi und Abdulrahman Aljurbua. „Retrodirective Transceiver Utilizing Phased Array and Direction Finder“. Applied Computational Electromagnetics Society 35, Nr. 9 (04.11.2020): 1073–79. http://dx.doi.org/10.47037/2020.aces.j.350914.
Der volle Inhalt der QuelleANDJELKOVIĆ, BOJAN, VANCO LITOVSKI und VOLKER ZERBE. „MISSION LEVEL MODELING AND SIMULATION LANGUAGE FOR MIXED-SIGNAL SYSTEM-ON-CHIP DESIGN“. Journal of Circuits, Systems and Computers 16, Nr. 01 (Februar 2007): 15–28. http://dx.doi.org/10.1142/s0218126607003435.
Der volle Inhalt der QuelleDissertationen zum Thema "Signal designer"
Langelaar, Johannes, Mattsson Adam Strömme und Filip Natvig. „Development of real time audio equalizer application using MATLAB App Designer“. Thesis, Uppsala universitet, Signaler och System, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388577.
Der volle Inhalt der QuelleSingh, Simranjit, und Iliass Temsamani. „Analys av åtgärder mot kvalitetsbrister inom signalprojektering“. Thesis, KTH, Hållbar produktionsutveckling (ML), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297913.
Der volle Inhalt der QuelleSignal designing means construction and modelling of railway signal facilities. Changes within the railway leads to modelling being made where the adequate prerequisites for a functioning facility are drawn by using CAD or BIM. Trafikverket have noticed various of quality deficiencies within the modelling phase of their facilities. It is mainly due to a lack of technical competence for the signal designers. Since 2019, Trafikverket have implemented new requirements for competence during their negotiations with consulting firms that conduct the designs, as a countermeasure for these quality deficiencies within competence. However, the effect of these countermeasures is still unknown. The objective for this project is to examine if the new requirements are used in the projects, if they are followed-up and if there are any effects from them. Moreover, to conclude if the requirements should be adjusted and if there are valid measures to increase the development of competence for signal designers. The methodology of the project is mostly based on interviews with specialists and analyses of the results. The result concluded that there is no definite effect of the competence requirements, mostly due to the length (time) of railway related projects. Furthermore, the competence requirements are appreciated by Trafikverkets employees however, it should be adjusted to be more definite. The best countermeasures are feedback to signal designers and followed by other countermeasure such as an own forum, more specific facility courses (education) and mentors for signal designers. A new form of negotiation which is called the “More value negotiation” is also a method of countering quality deficiencies.
Khomentrakarn, Chusak. „Testability analysis of asynchronous circuits designed from signal transition graphs“. Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22657.
Der volle Inhalt der QuelleAn event fault, interpreted as either a stimulating fault or an inhibiting fault of a transition, is used to cover the stuck-at-fault (SAF) behavior of an asynchronous circuit. An advantage of such analysis is that test vectors for an inhibiting fault can be obtained from operations on a signal transition graph (STG) or a state graph (SG) rather than simulation at the circuit level. A test vector for a test state is represented in an STG by a test marking for each event fault.
The lock relation of signals is a property proposed for hazard-free asynchronous circuit's synthesis. However, it is found that there is a special case of the lock relation that can prohibit the testing of some faults, the introduction of which cannot be avoided by the circuit level mapping. Some independent undetectable faults due to uncontrollable test states however can be detected if the reset state is the test state.
Using a minimized two-level sum-of-products representation, each literal in a cube of the sum-of-products form is found to have its own function corresponding to the STG. Consequently, four types of literals are defined and their relations with the SAF behavior over the stimulating/inhibiting fault are analyzed. Although factorization of a logic equation binded to a C-element or a set-reset (SR) flip-flop is not always possible, a correct implementation on a set-dominant SR flip-flop is guaranteed. (Abstract shortened by UMI.)
Tarnoff, David. „Episode 1.3 – Anatomy of a Binary Signal“. Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/computer-organization-design-oer/5.
Der volle Inhalt der QuelleRajroop, Peter J. „Fast pulse interactions on a transmission system : a novel EMP measuring technique using new designed loop probes“. Thesis, City University London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307875.
Der volle Inhalt der QuelleAwad, E. T. A. „Identification of competencies for sign designers in Jordan“. Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/b27d73c7-71a7-4c87-9e65-ae3a074ddd63/1.
Der volle Inhalt der QuelleShariat, Yazdi Ramin. „Mixed signal design flow, a mixed signal PLL case study“. Thesis, University of Waterloo, 2001. http://hdl.handle.net/10012/916.
Der volle Inhalt der QuelleTarnoff, David. „Episode 2.7 – The Effect of Sampling Rates on Digital Signals“. Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/computer-organization-design-oer/13.
Der volle Inhalt der QuelleSpalding, Scott A. Jr. „Adaptive OFDM Radar Signal Design“. Miami University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=miami1335728143.
Der volle Inhalt der QuelleSrivastava, Y. „Large signal modelling of coupled-cavity travelling wave tubes“. Thesis, Lancaster University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379740.
Der volle Inhalt der QuelleBücher zum Thema "Signal designer"
Shukla, Vikas. Signal integrity for PCB designers. Attleboro, MA: Reference Designer Inc., 2009.
Den vollen Inhalt der Quelle findenSign designer's sketchbook. Cincinnati, Ohio: ST Publications, 1988.
Den vollen Inhalt der Quelle findenCMOS: Mixed signal circuit design. 2. Aufl. Piscataway, NJ: IEEE Press, 2009.
Den vollen Inhalt der Quelle findenCMOS: Mixed signal circuit design. New York: Wiley, 2002.
Den vollen Inhalt der Quelle findenBaker, R. Jacob. CMOS: Mixed signal circuit design. 2. Aufl. Hoboken, NJ: John Wiley & Sons, 2009.
Den vollen Inhalt der Quelle findenBaker, R. Jacob. CMOS: Mixed signal circuit design. 2. Aufl. Piscataway, NJ: IEEE Press, 2009.
Den vollen Inhalt der Quelle findenSmall signal audio design. Oxford: Focal Press, 2010.
Den vollen Inhalt der Quelle findenH, Currie Edward, und SpringerLink (Online service), Hrsg. Introduction to Mixed-Signal, Embedded Design. New York, NY: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenLin, Chieh. Mixed-signal layout generation concepts. Boston, MA: Kluwer Academic Publishers, 2004.
Den vollen Inhalt der Quelle findenElectronics, noise, and signal recovery. London: Academic Press, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Signal designer"
Javid, Farakh, Stéphanie Youssef, Ramy Iskander und Marie-Minerve Louërat. „A Designer-Assisted Analog Synthesis Flow“. In Analog/RF and Mixed-Signal Circuit Systematic Design, 123–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36329-0_6.
Der volle Inhalt der QuelleDey, Sounak, Dibyanshu Jaiswal, Himadri Sekhar Paul und Arijit Mukherjee. „A Semantic Algorithm Repository and Workflow Designer Tool: Signal Processing Use Case“. In Internet of Things. IoT Infrastructures, 53–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47075-7_7.
Der volle Inhalt der QuelleWang, K. C. „Signals and Signal Processing“. In Design and Implementation of the MTX Operating System, 257–71. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17575-1_9.
Der volle Inhalt der QuelleSelf, Douglas. „Signal Switching“. In Small Signal Audio Design, 575–609. Third edition. | Abingdon, Oxon ; New York, NY : Routledge, 2020.: Focal Press, 2020. http://dx.doi.org/10.4324/9781003031833-21.
Der volle Inhalt der QuelleVidrih, Zlatko, und Eric Vezzoli. „Electrovibration Signal Design“. In Haptics: Perception, Devices, Control, and Applications, 304–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42324-1_30.
Der volle Inhalt der QuelleBrokaw, A. Paul. „Sensor Signal Normalization“. In Analog Circuit Design, 97–116. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2310-6_7.
Der volle Inhalt der QuelleRuss, Samuel H. „EMI/EMC: Design and Susceptibility“. In Signal Integrity, 137–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29758-3_11.
Der volle Inhalt der QuelleSaggese, E., und S. Tirró. „Signals“. In Satellite Communication Systems Design, 11–39. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3006-0_2.
Der volle Inhalt der QuelleSaggese, E. „Baseband Signal Processing“. In Satellite Communication Systems Design, 75–120. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3006-0_4.
Der volle Inhalt der QuelleHill, Geoff. „Small Signal Model“. In Loudspeaker Modelling and Design, 37–42. New York, NY: Routledge, [2019]: Routledge, 2018. http://dx.doi.org/10.4324/9781351116428-10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Signal designer"
Praisler, Mirela, und Stefanut Ciochina. „Intelligent screening for designer drugs: A signal analysis“. In 2013 17th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2013. http://dx.doi.org/10.1109/icstcc.2013.6688996.
Der volle Inhalt der QuelleJezek, Petr, und Lukas Vareka. „Workflow Designer - A web Application for Visually Designing EEG Signal Processing Pipelines“. In 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2019. http://dx.doi.org/10.1109/bibe.2019.00072.
Der volle Inhalt der Quelle„How much analog does a designer need to know for successful mixed-signal design? (panel)“. In the 35th annual conference, chair Stephan Ohr. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/277044.277112.
Der volle Inhalt der QuelleCheng, Y. Q., M. Zhu und W. Ge. „Signal integrity simulation design of image processor PCB combined with electromagnetic compatibility analyses based on Altium Designer 6“. In 2009 4th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2009. http://dx.doi.org/10.1109/iciea.2009.5138304.
Der volle Inhalt der QuelleSeeram, Siva Satya Sri Ganesh, Shanmukha Naga Naidu Polireddi, Geethu Remadevi Somanathan und Ramesh Bhakthavatchalu. „Synthesis of Synchronous Gray Code Counters by Combining Mentor Graphics HDL Designer and Xilinx VIVADO FPGA Flow“. In 2020 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2020. http://dx.doi.org/10.1109/iccsp48568.2020.9182333.
Der volle Inhalt der QuelleMünzer, Clemens, und Kristina Shea. „An Integrated Approach to Automated Synthesis, Simulation and Optimization of Energy and Signal-Based Design Concepts“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59816.
Der volle Inhalt der QuelleBoulahbal, D., M. F. Golnaraghi und F. Ismail. „Gear Crack Detection With the Wavelet Transform“. In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4009.
Der volle Inhalt der QuelleHou, Chin-Che, und Min-Chun Pan. „Feature Extraction Based on Teager-Kaiser Energy Operation and Envelope Spectra for Fault Detection of a Reciprocating Compressor“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24550.
Der volle Inhalt der QuelleTse, Peter W., und Wei Guo. „An Ensemble Empirical Mode Decomposition-Based Lossy Signal Compression Method for a Remote and Wireless Bearing Condition Monitoring System“. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70495.
Der volle Inhalt der QuelleAshtari, Ali, Gabriel Thomas, Hector Garces und Benjamin C. Flores. „Radar signal design using chaotic signals“. In 2007 International Waveform Diversity and Design Conference. IEEE, 2007. http://dx.doi.org/10.1109/wddc.2007.4339442.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Signal designer"
Arasu, K. T. Signal Designs via Combinatorial Designs. Fort Belvoir, VA: Defense Technical Information Center, Februar 2012. http://dx.doi.org/10.21236/ada565744.
Der volle Inhalt der QuelleBetz, John W., Charles R. Cahn, Philip A. Dafesh, Christopher J. Hegarty, Kenneth W. Hudnut, Amanda J. Jones, Richard Keegan, Karl Kovach, Lawrence S. Lenahan und Howard H. Ma. L1C Signal Design Options. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada456355.
Der volle Inhalt der QuelleRegan, Lynne. Signal Transduction by Designed Metal-Binding Proteins. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada416956.
Der volle Inhalt der QuelleNafakh, Abdullah Jalal, Yunchang Zhang, Sarah Hubbard und Jon D. Fricker. Assessment of a Displaced Pedestrian Crossing for Multilane Arterials. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317318.
Der volle Inhalt der QuelleLee, Edward A. Design of Parallel Systems for Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada275490.
Der volle Inhalt der QuelleLarsen, Cory A. Signal conditioning circuitry design for instrumentation systems. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1034887.
Der volle Inhalt der QuelleLee, Edward A. System-Level Design Methodology for Embedded Signal Processors. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada342899.
Der volle Inhalt der QuellePileggi, Lawrence. Analysis of Design of Mixed-Signal Electronic Packaging. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada377820.
Der volle Inhalt der QuelleApplegate, D., G. T. Mulholland und G. Trotter. Feedthrough Signal Board to Cryostat Seal Design, Testing. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/1031849.
Der volle Inhalt der QuelleHarris, J. H. Signal Processing Studies Program VLSI Designs for Unary Functions. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada188053.
Der volle Inhalt der Quelle