Zeitschriftenartikel zum Thema „Si heterojunction solar cells“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Si heterojunction solar cells" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Lin, C. H. „Si/Ge/Si double heterojunction solar cells“. Thin Solid Films 518, Nr. 6 (Januar 2010): S255—S258. http://dx.doi.org/10.1016/j.tsf.2009.10.101.
Der volle Inhalt der QuelleZelentsov, K. S., und A. S. Gudovskikh. „GaP/Si anisotype heterojunction solar cells“. Journal of Physics: Conference Series 741 (August 2016): 012096. http://dx.doi.org/10.1088/1742-6596/741/1/012096.
Der volle Inhalt der QuelleRuan, Kaiqun, Ke Ding, Yuming Wang, Senlin Diao, Zhibin Shao, Xiujuan Zhang und Jiansheng Jie. „Flexible graphene/silicon heterojunction solar cells“. Journal of Materials Chemistry A 3, Nr. 27 (2015): 14370–77. http://dx.doi.org/10.1039/c5ta03652f.
Der volle Inhalt der QuelleYamamoto, Hiroshi, Yoshirou Takaba, Yuji Komatsu, Ming-Ju Yang, Takashi Hayakawa, Masafumi Shimizu und Haruhisa Takiguchi. „High-efficiency μc-Si/c-Si heterojunction solar cells“. Solar Energy Materials and Solar Cells 74, Nr. 1-4 (Oktober 2002): 525–31. http://dx.doi.org/10.1016/s0927-0248(02)00071-5.
Der volle Inhalt der QuelleYamamoto, Kenji, Kunta Yoshikawa, Hisashi Uzu und Daisuke Adachi. „High-efficiency heterojunction crystalline Si solar cells“. Japanese Journal of Applied Physics 57, Nr. 8S3 (20.07.2018): 08RB20. http://dx.doi.org/10.7567/jjap.57.08rb20.
Der volle Inhalt der QuelleChen, Li, Xinliang Chen, Yiming Liu, Ying Zhao und Xiaodan Zhang. „Research on ZnO/Si heterojunction solar cells“. Journal of Semiconductors 38, Nr. 5 (Juni 2017): 054005. http://dx.doi.org/10.1088/1674-4926/38/5/054005.
Der volle Inhalt der QuelleHayashi, Toshiya, Takehiro Nishikura, Kazuhiro Nishimura und Yoshinori Ema. „p-Si/n-CdS Heterojunction Solar Cells“. Japanese Journal of Applied Physics 28, Part 1, No. 7 (20.07.1989): 1174–77. http://dx.doi.org/10.1143/jjap.28.1174.
Der volle Inhalt der QuelleAnderson, W. A., B. Jagannathan und E. Klementieva. „Lightweight, thin-film Si heterojunction solar cells“. Progress in Photovoltaics: Research and Applications 5, Nr. 6 (November 1997): 433–41. http://dx.doi.org/10.1002/(sici)1099-159x(199711/12)5:6<433::aid-pip195>3.0.co;2-p.
Der volle Inhalt der QuelleGudovskikh, A. S., K. S. Zelentsov, A. I. Baranov, D. A. Kudryashov, I. A. Morozov, E. V. Nikitina und J. P. Kleider. „Study of GaP/Si Heterojunction Solar Cells“. Energy Procedia 102 (Dezember 2016): 56–63. http://dx.doi.org/10.1016/j.egypro.2016.11.318.
Der volle Inhalt der QuelleNawaz, Muhammad. „Design Analysis of a-Si/c-Si HIT Solar Cells“. Advances in Science and Technology 74 (Oktober 2010): 131–36. http://dx.doi.org/10.4028/www.scientific.net/ast.74.131.
Der volle Inhalt der QuelleFocsa, A., I. Gordon, G. Beaucarne, O. Tuzun, A. Slaoui und J. Poortmans. „Heterojunction a-Si/poly-Si solar cells on mullite substrates“. Thin Solid Films 516, Nr. 20 (August 2008): 6896–901. http://dx.doi.org/10.1016/j.tsf.2007.12.097.
Der volle Inhalt der QuelleFahrner, W. R., R. Goesse, M. Scherff, T. Mueller, M. Ferrara und H. C. Neitzert. „Admittance Measurements on a-Si/c-Si Heterojunction Solar Cells“. Journal of The Electrochemical Society 152, Nr. 11 (2005): G819. http://dx.doi.org/10.1149/1.2041949.
Der volle Inhalt der QuelleYun, Myoung Hee, Jae Won Kim, Song Yi Park, Dong Suk Kim, Bright Walker und Jin Young Kim. „High-efficiency, hybrid Si/C60 heterojunction solar cells“. Journal of Materials Chemistry A 4, Nr. 42 (2016): 16410–17. http://dx.doi.org/10.1039/c6ta02248k.
Der volle Inhalt der QuelleGao, Peng, Ke Ding, Yan Wang, Kaiqun Ruan, Senlin Diao, Qing Zhang, Baoquan Sun und Jiansheng Jie. „Crystalline Si/Graphene Quantum Dots Heterojunction Solar Cells“. Journal of Physical Chemistry C 118, Nr. 10 (04.03.2014): 5164–71. http://dx.doi.org/10.1021/jp412591k.
Der volle Inhalt der QuelleLiu, Qiming, Ishwor Khatri, Ryo Ishikawa, Keiji Ueno und Hajime Shirai. „Efficient crystalline Si/organic hybrid heterojunction solar cells“. physica status solidi (c) 9, Nr. 10-11 (14.09.2012): 2101–6. http://dx.doi.org/10.1002/pssc.201200131.
Der volle Inhalt der QuelleNakamura, Junichi, Naoki Asano, Takeshi Hieda, Chikao Okamoto, Hiroyuki Katayama und Kyotaro Nakamura. „Development of Heterojunction Back Contact Si Solar Cells“. IEEE Journal of Photovoltaics 4, Nr. 6 (November 2014): 1491–95. http://dx.doi.org/10.1109/jphotov.2014.2358377.
Der volle Inhalt der QuelleКалиновский, В. С., Е. И. Теруков, Е. В. Контрош, В. Н. Вербицкий und A. С. Титов. „Радиационная стойкость гетеропереходных солнечных элементов alpha-Si : H/Si с тонким внутренним слоем i-alpha-Si : H“. Письма в журнал технической физики 44, Nr. 17 (2018): 95. http://dx.doi.org/10.21883/pjtf.2018.17.46576.17283.
Der volle Inhalt der QuelleMamedov, Huseyn, Syed Ismat Shah, Archil Chirakadze, Vusal Mammadov, Vusala Mammadova und Khumar Ahmedova. „Photovoltaic performance of p-Si/Cd1-xZnxO heterojunctions“. Photonics Letters of Poland 10, Nr. 1 (31.03.2018): 26. http://dx.doi.org/10.4302/plp.v10i1.797.
Der volle Inhalt der QuellePark, Hyomin, Sung Ju Tark, Chan Seok Kim, Sungeun Park, Young Do Kim, Chang-Sik Son, Jeong Chul Lee und Donghwan Kim. „Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells“. International Journal of Photoenergy 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/794876.
Der volle Inhalt der QuelleXu, Yan Li, und Jin Hua Li. „Photoelectrical and Photovoltaic Peroperties of n-ZnO/p-Si Heterojunction“. Advanced Materials Research 399-401 (November 2011): 1477–80. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.1477.
Der volle Inhalt der QuelleBearda, Twan, Kunta Yoshikawa, Elisabeth van Assche, Barry O’Sullivan, Ivan Gordon, Kenji Yamamoto, Kris Baert und Jef Poortmans. „Optimization of Post-Texturization Cleans for Heterojunction Solar Cells“. Solid State Phenomena 187 (April 2012): 341–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.187.341.
Der volle Inhalt der QuelleChao, Xiong, Li Hua Ding, Xiao Jin, Chen Lei, Hong Chun Yuan, Xi Fang Zhu, Zhang Yan und Xiang Cai Zhou. „Study the I-V and C-V Characterization of n-ZnO/p-Si Heterojunction“. Advanced Materials Research 690-693 (Mai 2013): 607–10. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.607.
Der volle Inhalt der QuelleLI, X., Y. XU und X. CHE. „a-Si/c-Si heterojunction solar cells on SiSiC ceramic substrates“. Rare Metals 25, Nr. 6 (Oktober 2006): 186–89. http://dx.doi.org/10.1016/s1001-0521(07)60071-0.
Der volle Inhalt der QuelleWang, Guang Wei, Sheng Li Lu und Xin Wei Zhao. „Properties of Sputtered-n-nc-Si:Er/p-Si Heterojunction Solar Cells“. Applied Mechanics and Materials 734 (Februar 2015): 791–95. http://dx.doi.org/10.4028/www.scientific.net/amm.734.791.
Der volle Inhalt der QuelleTseng, Shao-Ze, Chang-Rong Lin, Hung-Sen Wei, Chia-Hua Chan und Sheng-Hui Chen. „Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering“. International Journal of Photoenergy 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/707543.
Der volle Inhalt der QuelleLiu, Yiming, Yun Sun, Wei Liu und Jianghong Yao. „Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer)“. Phys. Chem. Chem. Phys. 16, Nr. 29 (2014): 15400–15410. http://dx.doi.org/10.1039/c4cp00668b.
Der volle Inhalt der QuelleZhang, Zexia, Tongxiang Cui, Ruitao Lv, Hongwei Zhu, Kunlin Wang, Dehai Wu und Feiyu Kang. „Improved Efficiency of Graphene/Si Heterojunction Solar Cells by Optimizing Hydrocarbon Feed Rate“. Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/359305.
Der volle Inhalt der QuelleAšmontas, Steponas, Maksimas Anbinderis, Jonas Gradauskas, Remigijus Juškėnas, Konstantinas Leinartas, Andžej Lučun, Algirdas Selskis et al. „Low Resistance TiO2/p-Si Heterojunction for Tandem Solar Cells“. Materials 13, Nr. 12 (25.06.2020): 2857. http://dx.doi.org/10.3390/ma13122857.
Der volle Inhalt der QuelleYang, Xing, Jiangtao Bian, Zhengxin Liu, Shuai Li, Chao Chen und Song He. „HIT Solar Cells with N-Type Low-Cost Metallurgical Si“. Advances in OptoElectronics 2018 (18.01.2018): 1–5. http://dx.doi.org/10.1155/2018/7368175.
Der volle Inhalt der QuelleHao, L. Z., W. Gao, Y. J. Liu, Z. D. Han, Q. Z. Xue, W. Y. Guo, J. Zhu und Y. R. Li. „High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells“. Nanoscale 7, Nr. 18 (2015): 8304–8. http://dx.doi.org/10.1039/c5nr01275a.
Der volle Inhalt der QuelleHuang, Ying, Xiao Ming Shen und Xiao Feng Wei. „Simulation of InAIN/Si Single-Heterojunction Solar Cells Using wxAMPS“. Applied Mechanics and Materials 665 (Oktober 2014): 111–14. http://dx.doi.org/10.4028/www.scientific.net/amm.665.111.
Der volle Inhalt der QuelleJeong, Hanbin, Hansol Kim, Won-Il Song, Kyung-Hoon Yoo, Jason Rama und Jae Kwan Lee. „Improved efficiency of solution-processed bulk-heterojunction organic solar cells and planar-heterojunction perovskite solar cells with efficient hole-extracting Si nanocrystals“. RSC Advances 6, Nr. 107 (2016): 104962–68. http://dx.doi.org/10.1039/c6ra24205g.
Der volle Inhalt der QuelleHe, Lining, Changyun Jiang, Hao Wang, Donny Lai und Rusli. „High efficiency planar Si/organic heterojunction hybrid solar cells“. Applied Physics Letters 100, Nr. 7 (13.02.2012): 073503. http://dx.doi.org/10.1063/1.3684872.
Der volle Inhalt der QuelleChen, L. C. „In2O3/Si heterojunction solar cells fabricated by InN oxidation“. European Physical Journal Applied Physics 40, Nr. 2 (21.09.2007): 145–48. http://dx.doi.org/10.1051/epjap:2007138.
Der volle Inhalt der QuelleWang, Qi, Matt Page, Eugene Iwaniczko, Yueqin Xu und Falah Hasoon. „Light Management for Efficient Crystalline Si Heterojunction Solar Cells“. ECS Transactions 25, Nr. 15 (17.12.2019): 11–17. http://dx.doi.org/10.1149/1.3300416.
Der volle Inhalt der QuelleWang, Qi. „High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells“. Philosophical Magazine 89, Nr. 28-30 (Oktober 2009): 2587–98. http://dx.doi.org/10.1080/14786430902919489.
Der volle Inhalt der QuelleMuralidharan, Pradyumna, Stephen M. Goodnick und Dragica Vasileska. „Multiscale modeling of transport in silicon heterojunction solar cells“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2017, DPC (01.01.2017): 1–15. http://dx.doi.org/10.4071/2017dpc-tha3_presentation1.
Der volle Inhalt der QuelleDeng, Quanrong, Yiqi Li, Yonglong Shen, Lian Chen, Geming Wang und Shenggao Wang. „Numerical simulation on n-MoS2/p-Si heterojunction solar cells“. Modern Physics Letters B 31, Nr. 07 (10.03.2017): 1750079. http://dx.doi.org/10.1142/s0217984917500798.
Der volle Inhalt der QuelleŠvrček, Vladimir, und Davide Mariotti. „Electronic interactions of silicon nanocrystals and nanocarbon materials: Hybrid solar cells“. Pure and Applied Chemistry 84, Nr. 12 (03.07.2012): 2629–39. http://dx.doi.org/10.1351/pac-con-12-01-12.
Der volle Inhalt der QuelleMamedov, Huseyn, Mustafa Muradov, Zoltan Konya, Akos Kukovecz, Krisztian Kordas, Syed Ismat Shah, Vusala Mamedova, Khumar Ahmedova, Elgun Tagiyev und Vusal Mamedov. „Fabrication and characterization of c-Si/porous-Si/CdS/ZnxCd1-xO heterojunctions for applications in nanostructured solar cells“. Photonics Letters of Poland 10, Nr. 3 (01.10.2018): 73. http://dx.doi.org/10.4302/plp.v10i3.813.
Der volle Inhalt der QuelleBorchert, D., G. Grabosch und W. R. Fahrner. „Preparation of (n) a-Si: H/(p) c-Si heterojunction solar cells“. Solar Energy Materials and Solar Cells 49, Nr. 1-4 (Dezember 1997): 53–59. http://dx.doi.org/10.1016/s0927-0248(97)00175-x.
Der volle Inhalt der QuelleVallisree, S., R. Thangavel und T. R. Lenka. „Modelling, simulation, optimization of Si/ZnO and Si/ZnMgO heterojunction solar cells“. Materials Research Express 6, Nr. 2 (23.11.2018): 025910. http://dx.doi.org/10.1088/2053-1591/aaf023.
Der volle Inhalt der QuelleTsai, Tzong-Han, Yung-Chun Wu, Shih-Sian Yang und Chun-Hao Chen. „Optimization of Amorphous Si/Crystalline Si Heterojunction Solar Cells by BF2Ion Implantation“. Japanese Journal of Applied Physics 51, Nr. 4S (01.04.2012): 04DP07. http://dx.doi.org/10.7567/jjap.51.04dp07.
Der volle Inhalt der QuelleZhang, Xiao-Mei, Dmitri Golberg, Yoshio Bando und Naoki Fukata. „n-ZnO/p-Si 3D heterojunction solar cells in Si holey arrays“. Nanoscale 4, Nr. 3 (2012): 737–41. http://dx.doi.org/10.1039/c2nr11752e.
Der volle Inhalt der QuelleKim, Gil-Sung, Min-Young Park, Jae-Ho Lee, Seung-Hun Yang, Jae-Hoon Kim, Sang-Kwon Lee und Choong Hun Lee. „Photovoltaic Characteristics of Si Nanowires-Incorporated Pyramid-Textured Heterojunction Si Solar Cells“. Journal of Nanoelectronics and Optoelectronics 10, Nr. 2 (01.04.2015): 277–81. http://dx.doi.org/10.1166/jno.2015.1746.
Der volle Inhalt der QuellePrivitera, Stefania, Vincenza Brancato, Donatella Spadaro, Ruggero Anzalone, Alessandra Alberti und Francesco La Via. „3C-SiC Polycrystalline Films on Si for Photovoltaic Applications“. Materials Science Forum 821-823 (Juni 2015): 189–92. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.189.
Der volle Inhalt der QuelleStegemann, Bert, Jan Kegel, Lars Korte und Heike Angermann. „Surface Optimization of Random Pyramid Textured Silicon Substrates for Improving Heterojunction Solar Cells“. Solid State Phenomena 255 (September 2016): 338–43. http://dx.doi.org/10.4028/www.scientific.net/ssp.255.338.
Der volle Inhalt der QuelleGrace, Tom, Hong Duc Pham, Christopher T. Gibson, Joseph G. Shapter und Prashant Sonar. „Application of A Novel, Non-Doped, Organic Hole-Transport Layer into Single-Walled Carbon Nanotube/Silicon Heterojunction Solar Cells“. Applied Sciences 9, Nr. 21 (05.11.2019): 4721. http://dx.doi.org/10.3390/app9214721.
Der volle Inhalt der QuelleWatahiki, Tatsuro, Takeo Furuhata, Tsutomu Matsuura, Tomohiro Shinagawa, Yusuke Shirayanagi, Takayuki Morioka, Tetsuro Hayashida et al. „Rear-emitter Si heterojunction solar cells with over 23% efficiency“. Applied Physics Express 8, Nr. 2 (30.01.2015): 021402. http://dx.doi.org/10.7567/apex.8.021402.
Der volle Inhalt der QuelleKhan, Aurangzeb, Masafumi Yamaguchi und N. Kojima. „Recombination center in C60/p-Si heterojunction and solar cells“. Solid-State Electronics 44, Nr. 8 (August 2000): 1471–75. http://dx.doi.org/10.1016/s0038-1101(00)00062-9.
Der volle Inhalt der Quelle