Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Si heterojunction solar cells“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Si heterojunction solar cells" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Si heterojunction solar cells"
Lin, C. H. „Si/Ge/Si double heterojunction solar cells“. Thin Solid Films 518, Nr. 6 (Januar 2010): S255—S258. http://dx.doi.org/10.1016/j.tsf.2009.10.101.
Der volle Inhalt der QuelleZelentsov, K. S., und A. S. Gudovskikh. „GaP/Si anisotype heterojunction solar cells“. Journal of Physics: Conference Series 741 (August 2016): 012096. http://dx.doi.org/10.1088/1742-6596/741/1/012096.
Der volle Inhalt der QuelleRuan, Kaiqun, Ke Ding, Yuming Wang, Senlin Diao, Zhibin Shao, Xiujuan Zhang und Jiansheng Jie. „Flexible graphene/silicon heterojunction solar cells“. Journal of Materials Chemistry A 3, Nr. 27 (2015): 14370–77. http://dx.doi.org/10.1039/c5ta03652f.
Der volle Inhalt der QuelleYamamoto, Hiroshi, Yoshirou Takaba, Yuji Komatsu, Ming-Ju Yang, Takashi Hayakawa, Masafumi Shimizu und Haruhisa Takiguchi. „High-efficiency μc-Si/c-Si heterojunction solar cells“. Solar Energy Materials and Solar Cells 74, Nr. 1-4 (Oktober 2002): 525–31. http://dx.doi.org/10.1016/s0927-0248(02)00071-5.
Der volle Inhalt der QuelleYamamoto, Kenji, Kunta Yoshikawa, Hisashi Uzu und Daisuke Adachi. „High-efficiency heterojunction crystalline Si solar cells“. Japanese Journal of Applied Physics 57, Nr. 8S3 (20.07.2018): 08RB20. http://dx.doi.org/10.7567/jjap.57.08rb20.
Der volle Inhalt der QuelleChen, Li, Xinliang Chen, Yiming Liu, Ying Zhao und Xiaodan Zhang. „Research on ZnO/Si heterojunction solar cells“. Journal of Semiconductors 38, Nr. 5 (Juni 2017): 054005. http://dx.doi.org/10.1088/1674-4926/38/5/054005.
Der volle Inhalt der QuelleHayashi, Toshiya, Takehiro Nishikura, Kazuhiro Nishimura und Yoshinori Ema. „p-Si/n-CdS Heterojunction Solar Cells“. Japanese Journal of Applied Physics 28, Part 1, No. 7 (20.07.1989): 1174–77. http://dx.doi.org/10.1143/jjap.28.1174.
Der volle Inhalt der QuelleAnderson, W. A., B. Jagannathan und E. Klementieva. „Lightweight, thin-film Si heterojunction solar cells“. Progress in Photovoltaics: Research and Applications 5, Nr. 6 (November 1997): 433–41. http://dx.doi.org/10.1002/(sici)1099-159x(199711/12)5:6<433::aid-pip195>3.0.co;2-p.
Der volle Inhalt der QuelleGudovskikh, A. S., K. S. Zelentsov, A. I. Baranov, D. A. Kudryashov, I. A. Morozov, E. V. Nikitina und J. P. Kleider. „Study of GaP/Si Heterojunction Solar Cells“. Energy Procedia 102 (Dezember 2016): 56–63. http://dx.doi.org/10.1016/j.egypro.2016.11.318.
Der volle Inhalt der QuelleNawaz, Muhammad. „Design Analysis of a-Si/c-Si HIT Solar Cells“. Advances in Science and Technology 74 (Oktober 2010): 131–36. http://dx.doi.org/10.4028/www.scientific.net/ast.74.131.
Der volle Inhalt der QuelleDissertationen zum Thema "Si heterojunction solar cells"
Lau, Yin Ping. „Si/CdTe heterojunction fabricated by closed hot wall system“. HKBU Institutional Repository, 1995. http://repository.hkbu.edu.hk/etd_ra/44.
Der volle Inhalt der QuelleMartin, de Nicolas Silvia. „a-Si : H/c-Si heterojunction solar cells : back side assessment and improvement“. Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112253/document.
Der volle Inhalt der QuelleAmongst available silicon-based photovoltaic technologies, a-Si:H/c-Si heterojunctions (HJ) have raised growing attention because of their potential for further efficiency improvement and cost reduction. In this thesis, research on n-type a-Si:H/c-Si heterojunction solar cells developed at the Institute National de l’Énergie Solaire is presented. Technological and physical aspects of HJ devices are reviewed, with the focus on the comprehension of the back side role. Then, an extensive work to optimise amorphous layers used at the rear side of our devices as well as back contact films is addressed. Through the development and implementation of high-quality intrinsic and n-doped a-Si:H films on HJ solar cells, the needed requirements at the back side of devices are established. A comparison between different back surface fields (BSF) with and without the inclusion of a buffer layer is presented and resulting solar cell output characteristics are discussed. A discussion on the back contact of HJ solar cells is also presented. A new back TCO approach based on boron-doped zinc oxide (ZnO:B) layers is studied. With the aim of developing high-quality ZnO:B layers well-adapted to their use in HJ devices, different deposition parameters as well as post-deposition treatments such as post-hydrogen plasma or excimer laser annealing are studied, and their influence on solar cells is assessed. Throughout this work it is evidenced that the back side of HJ solar cells plays an important role on the achievement of high efficiencies. However, the enhancement of the overall device performance due to the back side optimisation is always dependent on phenomena taking place at the front side of devices. The use of the optimised back side layers developed in this thesis, together with improved front side layers and a novel metallisation approach have permitted a record conversion efficiency over 22%, thus demonstrating the great potential of this technology
Meitzner, Karl. „Heterojunction-Assisted Impact Ionization and Other Free Carrier Dynamics in Si, ZnS/Si, and ZnSe/Si“. Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19294.
Der volle Inhalt der QuelleGogolin, Ralf [Verfasser]. „Analysis and optimization of a-Si:H/c-Si heterojunction solar cells / Ralf Gogolin“. Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/1099098130/34.
Der volle Inhalt der QuellePehlivan, Ozlem. „Growth And Morphological Characterization Of Intrinsic Hydrogenated Amorphous Silicon Thin Film For A-si:h/c-si Heterojunction Solar Cells“. Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615488/index.pdf.
Der volle Inhalt der QuelleMüller, Thomas. „Heterojunction solar cells (a-Si, c-Si) investigations on PECV deposited hydrogenated silicon alloys for use as high quality surface passivation and emitter, BSF“. Berlin Logos-Verl, 2009. http://d-nb.info/997563184/04.
Der volle Inhalt der QuelleHussain, Babar. „Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer“. Thesis, The University of North Carolina at Charlotte, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10258481.
Der volle Inhalt der QuelleThe conversion efficiency of conventional silicon (Si) photovoltaic cells has not been improved significantly during last two decades but their cost decreased dramatically during this time. However, the higher price-per-watt of solar cells is still the main bottleneck in their widespread use for power generation. Therefore, new materials need to be explored for the fabrication of solar cells potentially with lower cost and higher efficiency. The n-type zinc oxide (n-ZnO) and p-type Si (p-Si) based single heterojunction solar cell (SHJSC) is one of the several attempts to replace conventional Si single homojunction solar cell technology. There are three inadequacies in the literature related to n-ZnO/p-Si SHJSC: (1) a detailed theoretical analysis to evaluate potential of the solar cell structure, (2) inconsistencies in the reported value of open circuit voltage (VOC) of the solar cell, and (3) lower value of experimentally achieved VOC as compared to theoretical prediction based on band-bending between n-ZnO and p-Si. Furthermore, the scientific community lacks consensus on the optimum growth parameters of ZnO.
In this dissertation, I present simulation and experimental results related to n-ZnO/p-Si SHJSC to fill the gaps mentioned above. Modeling and simulation of the solar cell structure are performed using PC1D and AFORS-HET software taking practical constraints into account to explore the potential of the structure. Also, unnoticed benefits of ZnO in solar cells such as an additional antireflection (AR) effect and low temperature deposition are highlighted. The growth parameters of ZnO using metal organic chemical vapor deposition and sputtering are optimized. The structural, optical, and electrical characterization of ZnO thin films grown on sapphire and Si substrates is performed. Several n-ZnO/p-Si SHJSC devices are fabricated to confirm the repeatability of the VOC. Moreover, the AR effect of ZnO while working as an n-type layer is experimentally verified. The spatial analysis for thickness uniformity and optical quality of ZnO films is carried out. These properties turn out to play a fundamental role in device performance and so far have been overlooked by the research community. Three different materials are used as a quantum buffer layer at the interface of ZnO and Si to suppress the interface states and improve the VOC. The best measured value of VOC of 359 mV is achieved using amorphous-ZnO (a-ZnO) as the buffer layer at the interface. Finally, supplementary simulations are performed to optimize the valence-band and conduction-band offsets by engineering the bandgap and electron affinity of ZnO.
After we published our initial results related to the feasibility of n-ZnO/p-Si SHJSC [Sol. Energ. Mat. Sol. Cells 139 (2015) 95–100], different research groups have fabricated and reported the solar cell performance with the best efficiency of 7.1% demonstrated very recently by Pietruszka et al. [Sol. Energ. Mat. Sol. Cells 147 (2016) 164–170]. We conclude that major challenge in n-ZnO/p-Si SHJSC is to overcome Fermi-level pinning at the hetero-interface. A potential solution is to use the appropriate material as buffer layer which is confirmed by observing an improvement in VOC using a-ZnO at the interface as buffer layer. Once the interface quality is improved and the experimental value of VOC matched the theoretical prediction, the n-ZnO/p-Si SHJSC can potentially have significant contribution in solar cells industry.
Jakkala, Pratheesh Kumar. „Fabrication of Si/InGaN Heterojunction Solar Cells by RF Sputtering Method: Improved Electrical and Optical Properties of Indium Gallium Nitride (InGaN) Thin Films“. Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1490714042486824.
Der volle Inhalt der QuelleLabrune, Martin. „Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells“. Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00611652.
Der volle Inhalt der QuelleHertl, Vít. „Studium fotovoltaických nanostruktur mikroskopickými metodami“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-444405.
Der volle Inhalt der QuelleBücher zum Thema "Si heterojunction solar cells"
Landis, Geoffrey A. Deposition and characterization of ZnS/Si heterojunctions produced by vaccum evaporation. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenLandis, Geoffrey. Deposition and characterization of ZnS/Si heterojunctions produced by vaccum evaporation. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenFahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenFahrner, Wolfgang Rainer, Hrsg. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37039-7.
Der volle Inhalt der QuelleNakajima, K., und Noritaka Usami. Crystal growth of Si for solar cells. Berlin: Springer Verlag, 2009.
Den vollen Inhalt der Quelle findenWeinberg, Irving. Heteroepitaxial InP solar cells on Si and GaAs substrates. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenSolanki, Chetan Singh, und Hemant Kumar Singh. Anti-reflection and Light Trapping in c-Si Solar Cells. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4771-8.
Der volle Inhalt der QuelleEllison, T. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology. Golden, CO: National Renewable Energy Laboratory, 2000.
Den vollen Inhalt der Quelle findenSenoussaoui, Nadia. Einfluss der Oberflächenstrukturierung auf die optischen Eigenschaften der Dünnschichtsolarzellen auf der Basis von a-Si : H und [mu]c-Si: H. Jülich: Forschungszentrum Jülich, Zentralbibliothek, 2004.
Den vollen Inhalt der Quelle findenFahrner, Wolfgang Rainer. Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells. Springer, 2013.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Si heterojunction solar cells"
Fujiwara, Hiroyuki. „Amorphous/Crystalline Si Heterojunction Solar Cells“. In Spectroscopic Ellipsometry for Photovoltaics, 227–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75377-5_9.
Der volle Inhalt der QuelleMuñoz, Delfina, Thibaut Desrues und Pierre-Jean Ribeyron. „a-Si:H/c-Si Heterojunction Solar Cells: A Smart Choice for High Efficiency Solar Cells“. In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 539–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_17.
Der volle Inhalt der QuelleSharma, Jayasree Roy, Debolina Saha, Arijit Bardhan Roy, Gourab Das, Snehanshu Patra, A. K. Barua und Sumita Mukhopadhyay. „Application of N-doped ZnO Nanorods in Heterojunction Si Solar Cells“. In Springer Proceedings in Physics, 361–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_55.
Der volle Inhalt der QuelleAnwer, Syed, und Mukul Das. „Performance analysis of ZnO/c-Si heterojunction solar cell“. In Computer, Communication and Electrical Technology, 189–92. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315400624-37.
Der volle Inhalt der QuelleManzoor, Rumysa, Prashant Singh, Sanjay K. Srivastava, P. Prathap und C. M. S. Rauthan. „Alkaline Treatment of Silicon Nanostructures for Efficient PEDOT:PSS/Si Heterojunction Solar Cells“. In Springer Proceedings in Physics, 477–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_74.
Der volle Inhalt der QuelleRen, Bingyan, Yan Zhang, Bei Guo, Bing Zhang, Hongyuan Li, Wenjing Wang und Lei Zhao. „Computer Simulation of P-A-Si:H/N-C-Si Heterojunction Solar Cells“. In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1239–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_249.
Der volle Inhalt der QuelleMandal, Lipika, S. Sadique Anwer Askari, Manoj Kumar und Muzaffar Imam. „Analysis of ZnO/Si Heterojunction Solar Cell with Interface Defect“. In Advances in Computer, Communication and Control, 533–38. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3122-0_53.
Der volle Inhalt der QuelleKim, Sang Kyun, Jung Chul Lee, Viresh Dutta, Sung Ju Park und Kyung Hoon Yoon. „The Effect of ZnO:Al Sputtering Condition on a-Si:H / Si Wafer Heterojunction Solar Cells“. In Solid State Phenomena, 1015–18. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1015.
Der volle Inhalt der QuelleGuechi, Abla, und Mohamed Chegaar. „Seasonal Variations of Solar Radiation on the Performance of Crystalline Silicon Heterojunction (c-Si-HJ) Solar Cells“. In Advanced Control Engineering Methods in Electrical Engineering Systems, 267–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97816-1_20.
Der volle Inhalt der QuelleAngermann, Heike, und Jörg Rappich. „Wet-Chemical Conditioning of Silicon Substrates for a-Si:H/c-Si Heterojunctions“. In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 45–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Si heterojunction solar cells"
Chen, Christopher T., Rebecca Saive, Hal S. Emmer, Shaul Aloni und Harry A. Atwater. „GaP/Si heterojunction solar cells“. In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356244.
Der volle Inhalt der QuelleAger, J. W., L. A. Reichertz, K. M. Yu, W. J. Schaff, T. L. Williamson, M. A. Hoffbauer, N. M. Haegel und W. Walukiewicz. „InGaN/Si heterojunction tandem solar cells“. In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922663.
Der volle Inhalt der QuelleAbdul Hadi, Sabina, Ammar Nayfeh, Pouya Hashemi und Judy Hoyt. „a-Si/c-Si1−xGex/c-Si heterojunction solar cells“. In 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2011). IEEE, 2011. http://dx.doi.org/10.1109/sispad.2011.6035083.
Der volle Inhalt der QuelleLombardo, Salvatore, Cosimo Gerardi, Andrea Scuto, Marina Foti, Giuseppe Condorelli, Andrea Canino und Anna Battaglia. „Amorphous Si tandem solar cells with SiOx / microcrystalline Si heterojunction“. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547367.
Der volle Inhalt der QuelleNakamura, J. „Development of Heterojunction Back Contact Si Solar Cells“. In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.g-8-1.
Der volle Inhalt der QuelleSyu, Hong-Jhang, Shu-Chia Shiu und Ching-Fuh Lin. „Si/silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) heterojunction solar cells“. In SPIE Solar Energy + Technology, herausgegeben von Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.893353.
Der volle Inhalt der QuelleFalk, Fritz, Guobin Jia, Gudrun Andrä, Ingo Sill und Nikolay Petkov. „Silicon nanowire solar cells with a-Si heterojunction showing 7.3% efficiency“. In SPIE Solar Energy + Technology, herausgegeben von Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.897369.
Der volle Inhalt der QuelleIslam, Kazi, und Ammar Nayfeh. „Simulation of a-Si/c-GaAs/c-Si Heterojunction Solar Cells“. In 2012 European Modelling Symposium (EMS). IEEE, 2012. http://dx.doi.org/10.1109/ems.2012.15.
Der volle Inhalt der QuelleMuralidharan, Pradyumna, Kunal Ghosh, Dragica Vasileska und Stephen M. Goodnick. „Hot hole transport in a-Si/c-Si heterojunction solar cells“. In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925443.
Der volle Inhalt der QuelleOhdaira, Keisuke, Cheng Guo, Hideyuki Takagishi, Takashi Masuda, Zhongrong Shen und Tatsuya Shimoda. „Si heterojunction solar cells with a-Si passivation films formed from liquid Si“. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749690.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Si heterojunction solar cells"
Hegedus, Steven S. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1224531.
Der volle Inhalt der QuelleHegedus, Steven S. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214156.
Der volle Inhalt der QuelleAuthor, Not Given. High efficiency (> 20%) heterojunction solar cell on 30μm thin crystalline Si substrates using a novel exfoliation technology. Office of Scientific and Technical Information (OSTI), Dezember 2012. http://dx.doi.org/10.2172/1356325.
Der volle Inhalt der QuelleRedwing, Joan, Tom Mallouk, Theresa Mayer, Elizabeth Dickey und Chris Wronski. High Aspect Ratio Semiconductor Heterojunction Solar Cells. Office of Scientific and Technical Information (OSTI), Mai 2013. http://dx.doi.org/10.2172/1350042.
Der volle Inhalt der QuelleJen, Alex K. Development of Efficient Charge-Selective Materials for Bulk Heterojunction Polymer Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, Januar 2015. http://dx.doi.org/10.21236/ada616502.
Der volle Inhalt der QuelleTao, Meng. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells. Office of Scientific and Technical Information (OSTI), März 2015. http://dx.doi.org/10.2172/1171391.
Der volle Inhalt der QuelleCompaan, A. D., X. Deng und R. G. Bohn. High efficiency thin film CdTe and a-Si based solar cells. Office of Scientific and Technical Information (OSTI), Januar 2000. http://dx.doi.org/10.2172/754623.
Der volle Inhalt der QuelleGrassman, Tyler, Steven Ringel, Emily Warren, Stephen Bremner und Alex Stavrides. GaAsP/Si Tandem Solar Cells: Pathway to Low-Cost, High-Efficiency Photovoltaics. Office of Scientific and Technical Information (OSTI), Mai 2021. http://dx.doi.org/10.2172/1784256.
Der volle Inhalt der QuelleWang, Qi. Film Si Solar Cells with Nano Si: Cooperative Research and Development Final Report, CRADA Number CRD-09-00356. Office of Scientific and Technical Information (OSTI), Mai 2011. http://dx.doi.org/10.2172/1013897.
Der volle Inhalt der QuelleOlsen, L. C. Alternative Heterojunction Partners for CIS-Based Solar Cells; Final Report: 1 January 1998--31 August 2001. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/15003609.
Der volle Inhalt der Quelle