Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Shorův algoritmus“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Shorův algoritmus" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Shorův algoritmus"
Litinskaia, Evgeniia L., Pavel A. Rudenko, Kirill V. Pozhar und Nikolai A. Bazaev. „Validation of Short-Term Blood Glucose Prediction Algorithms“. International Journal of Pharma Medicine and Biological Sciences 8, Nr. 2 (April 2019): 34–39. http://dx.doi.org/10.18178/ijpmbs.8.2.34-39.
Der volle Inhalt der QuelleCherckesova, Larissa, Olga Safaryan, Pavel Razumov, Irina Pilipenko, Yuriy Ivanov und Ivan Smirnov. „Speed improvement of the quantum factorization algorithm of P. Shor by upgrade its classical part“. E3S Web of Conferences 224 (2020): 01016. http://dx.doi.org/10.1051/e3sconf/202022401016.
Der volle Inhalt der QuelleEkerå, Martin. „Quantum algorithms for computing general discrete logarithms and orders with tradeoffs“. Journal of Mathematical Cryptology 15, Nr. 1 (01.01.2021): 359–407. http://dx.doi.org/10.1515/jmc-2020-0006.
Der volle Inhalt der QuelleDevitt, S. J., A. G. Fowler und L. C. L. Hollenberg. „Robustness of Shor's algorithm“. Quantum Information and Computation 6, Nr. 7 (November 2006): 616–29. http://dx.doi.org/10.26421/qic6.7-5.
Der volle Inhalt der QuelleAkbar, Rahmad, Bambang Pramono und Rizal Adi Saputra. „Implementasi Algoritma Simon Pada Aplikasi Kamus Perubahan Fi’il (Kata Kerja Bahasa Arab) Berbasis Android“. Ultimatics : Jurnal Teknik Informatika 13, Nr. 1 (11.06.2021): 12–18. http://dx.doi.org/10.31937/ti.v13i1.1850.
Der volle Inhalt der QuelleLiu, Ye-Chao, Jiangwei Shang und Xiangdong Zhang. „Coherence Depletion in Quantum Algorithms“. Entropy 21, Nr. 3 (07.03.2019): 260. http://dx.doi.org/10.3390/e21030260.
Der volle Inhalt der QuelleKendon, V. M., und W. J. Munro. „Entanglement and its role in Shor's algorithm“. Quantum Information and Computation 6, Nr. 7 (November 2006): 630–40. http://dx.doi.org/10.26421/qic6.7-6.
Der volle Inhalt der QuelleSavran, I., M. Demirci und A. H. Yılmaz. „Accelerating Shor’s factorization algorithm on GPUs“. Canadian Journal of Physics 96, Nr. 7 (Juli 2018): 759–61. http://dx.doi.org/10.1139/cjp-2017-0768.
Der volle Inhalt der QuelleGAWRON, P., und J. A. MISZCZAK. „NUMERICAL SIMULATIONS OF MIXED STATE QUANTUM COMPUTATION“. International Journal of Quantum Information 03, Nr. 01 (März 2005): 195–99. http://dx.doi.org/10.1142/s0219749905000748.
Der volle Inhalt der QuelleMuruganantham, B., P. Shamili, S. Ganesh Kumar und A. Murugan. „Quantum cryptography for secured communication networks“. International Journal of Electrical and Computer Engineering (IJECE) 10, Nr. 1 (01.02.2020): 407. http://dx.doi.org/10.11591/ijece.v10i1.pp407-414.
Der volle Inhalt der QuelleDissertationen zum Thema "Shorův algoritmus"
Nwaokocha, Martyns. „Shorův algoritmus v kvantové kryptografii“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445457.
Der volle Inhalt der QuelleNyman, Peter. „Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer“. Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-2329.
Der volle Inhalt der QuelleUtvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer.
Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.
Kugel, Felix. „Das Shor-Verfahren als stochastischer Algorithmus“. [S.l.] : [s.n.], 2006. http://137.193.200.177/ediss/kugel-felix/meta.html.
Der volle Inhalt der QuelleThakkar, Darshan Suresh, und darshanst@gmail com. „FPGA Implementation of Short Word-Length Algorithms“. RMIT University. Electrical and Computer Engineering, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080806.140908.
Der volle Inhalt der QuelleBandini, Michele. „Crittografia quantistica e algoritmo di Shor“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17073/.
Der volle Inhalt der QuelleSchilling, Gordian Hansjoerg. „Algorithms for short-term and periodic process scheduling and rescheduling“. Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7696.
Der volle Inhalt der QuelleFeng, Wenlan. „Modelling market demand and manufacturing response using genetic algorithms“. Thesis, Glasgow Caledonian University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361094.
Der volle Inhalt der QuelleDrobouchevitch, Inna G. „Design and analysis of algorithms for short-route shop scheduling problems“. Thesis, University of Greenwich, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285392.
Der volle Inhalt der QuelleHealy, Cornelius Thomas. „Short-length low-density parity-check codes : construction and decoding algorithms“. Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/7875/.
Der volle Inhalt der QuelleResende, Diogo Soares. „Ferramenta trifásica para síntese e análise da proteção em sistemas desequilibrados“. Universidade Federal de Juiz de Fora (UFJF), 2016. https://repositorio.ufjf.br/jspui/handle/ufjf/3134.
Der volle Inhalt der QuelleApproved for entry into archive by Diamantino Mayra (mayra.diamantino@ufjf.edu.br) on 2017-01-31T11:22:04Z (GMT) No. of bitstreams: 1 diogosoaresresende.pdf: 5068811 bytes, checksum: e6f520585ffef78e123573bd1e41ff4d (MD5)
Made available in DSpace on 2017-01-31T11:22:04Z (GMT). No. of bitstreams: 1 diogosoaresresende.pdf: 5068811 bytes, checksum: e6f520585ffef78e123573bd1e41ff4d (MD5) Previous issue date: 2016-09-01
FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Esta dissertação propõe uma ferramenta computacional para síntese e análise da proteção em sistemas de subtransmissão e de distribuição de energia elétrica na presença de desequilíbrios. Tais sistemas, em especial os de distribuição, são geralmente desequilibrados e podem conter trechos mono, bi ou trifásicos, além de operarem com carregamento distribuído de maneira assimétrica, o que torna as grandezas elétricas observadas diferentes para cada fase analisada. Neste trabalho foram desenvolvidos dois métodos, que foram implementados na ferramenta proposta: (i) procedimentos automáticos para ajustes ótimo de dispositivos de proteção em sistemas de distribuição desequilibrados; (ii) método para a análise gráfica do desempenho da proteção aplicada a sistemas desequilibrados. A ferramenta proposta foi desenvolvida em ambiente MatLab e permite também a síntese dos ajustes de proteções de sobrecorrente (mediante a utilização de um Algoritmo Genético) e de distância, além de calcular as relações de transformação para TCs e TPs. A ferramenta foi calibrada através da comparação dos resultados obtidos pela mesma com os obtidos por equipamentos reais de proteção, tendo também sido realizados testes com diferentes sistemas da literatura.
This thesis proposes a computacional tool for synthesis and analysis of protection in electricity subtransmission and distribution systems in presence of imbalances. Such systems, in particular distribution, are generally unbalanced, and can contain mono-, bi- or triphasic sections, and operate with asymmetrically distributed loads, which makes electrical quantities observed different for each phase analyzed. In this work were developed two methods, which have been implemented in the proposed tool: (i) automatic procedures for optimal settings of protection devices in unbalanced distribution systems; (ii) method for graphical analysis of protection’s performance applied to unbalanced systems. The proposed tool was developed in MatLab and also allows the synthesis of overcurrent (using a Genetic Algorithm) and distance settings and calculates the transformation ratios to PTs and CTs. The tool is calibrated by comparing the results obtained by the same with those obtained by actual equipment protection, has also been made tests with different systems in the literature.
Bücher zum Thema "Shorův algoritmus"
Asquith, Paul. Short sales and trade classification algorithms. Cambridge, MA: National Bureau of Economic Research, 2008.
Den vollen Inhalt der Quelle findenBurstein, Joseph. Exact numerical solutions of nonlinear differential equations, short algorithms: After three centuries of approximate methods. Boston: Metrics Press, 2002.
Den vollen Inhalt der Quelle finden1974-, Zomorodian Afra J., Hrsg. Advances in applied and computational topology: American Mathematical Society Short Course on Computational Topology, January 4-5, 2011, New Orleans, Louisiana. Providence, R.I: American Mathematical Society, 2012.
Den vollen Inhalt der Quelle findenTschinkel, Yuri, Carlo Gasbarri, Steven Lu und Mike Roth. Rational points, rational curves, and entire holomorphic curves on projective varieties: CRM short thematic program, June 3-28, 2013, Centre de Recherches Mathematiques, Universite de Montreal, Quebec, Canada. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Development, refinement and testing of a short term solar flare pR[sic]ediction algorithm: Progress report, August 1992 - February, 1993. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. FNAS short term solar flare prediction algorithm: Semi-annual report, February 1, 1993 - August 1, 1993. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. FNAS short term solar flare prediction algorithm: Semi-annual report, February 1, 1993 - August 1, 1993. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenPriest, Graham. Logic: A Very Short Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/actrade/9780198811701.001.0001.
Der volle Inhalt der QuelleVoit, Eberhard O. Systems Biology: A Very Short Introduction. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198828372.001.0001.
Der volle Inhalt der QuelleJohn F. Kennedy Space Center., Hrsg. Development of algorithms and error analyses for the short baseline lightning detection and ranging system. Kennedy Space Center, Fla: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Shorův algoritmus"
Bläser, Markus, und Bodo Siebert. „Computing Cycle Covers without Short Cycles“. In Algorithms — ESA 2001, 368–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44676-1_31.
Der volle Inhalt der QuelleFishkin, Aleksei V. „Disk Graphs: A Short Survey“. In Approximation and Online Algorithms, 260–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24592-6_23.
Der volle Inhalt der QuelleStetsyuk, Petro I. „Shor’s r-Algorithms: Theory and Practice“. In Optimization Methods and Applications, 495–520. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68640-0_24.
Der volle Inhalt der QuelleLiebchen, Christian. „Finding Short Integral Cycle Bases for Cyclic Timetabling“. In Algorithms - ESA 2003, 715–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39658-1_64.
Der volle Inhalt der QuelleElyash, Igor G. „Management of Short Bowel Syndrome“. In Clinical Algorithms in General Surgery, 201–2. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-98497-1_53.
Der volle Inhalt der QuelleMäkinen, Veli, Niko Välimäki, Antti Laaksonen und Riku Katainen. „Unified View of Backward Backtracking in Short Read Mapping“. In Algorithms and Applications, 182–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12476-1_13.
Der volle Inhalt der QuelleLiang, Jie, und Ronald Jackups. „Sequence and Spatial Motif Discovery in Short Sequence Fragments“. In Encyclopedia of Algorithms, 1945–52. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2864-4_601.
Der volle Inhalt der QuelleLiang, Jie, und Ronald Jackups. „Sequence and Spatial Motif Discovery in Short Sequence Fragments“. In Encyclopedia of Algorithms, 1–10. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27848-8_601-1.
Der volle Inhalt der QuellePark, Kyewon Koh. „A Short Proof of Even α-Equivalence“. In Algorithms, Fractals, and Dynamics, 193–99. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-0321-3_17.
Der volle Inhalt der QuelleDanda, Umesh Sandeep, G. Ramakrishna, Jens M. Schmidt und M. Srikanth. „On Short Fastest Paths in Temporal Graphs“. In WALCOM: Algorithms and Computation, 40–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68211-8_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Shorův algoritmus"
Maknickienė, Nijolė, und Kristina Miškinytė. „SKAITMENINIŲ VALIUTŲ KAINŲ PROGNOZAVIMAS NAUDOJANT GILIOJO MOKYMOSI ALGORITMĄ“. In 23rd Conference for Young Researchers "Economics and Management". Vilnius Gediminas Technical University, 2020. http://dx.doi.org/10.3846/vvf.2020.033.
Der volle Inhalt der QuelleCHOFFRUT, CHRISTIAN. „A SHORT INTRODUCTION TO AUTOMATIC GROUP THEORY“. In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0004.
Der volle Inhalt der Quelle„De Novo Short Read Assembly Algorithm with Low Memory Usage“. In International Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004881002150220.
Der volle Inhalt der QuelleSharma, Shashank, und Ankit Singhal. „De-Novo Assembly of Short Reads in Minimal Overlap Model“. In International Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005214100440054.
Der volle Inhalt der Quelle„The Distribution of Short Word Match Counts between Markovian Sequences“. In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004203700250033.
Der volle Inhalt der QuelleMucha, Marcin. „Lyndon Words and Short Superstrings“. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973105.69.
Der volle Inhalt der QuelleCastillo, K., und F. R. Rafaeli. „A short note on interlacing and monotonicity of zeros of orthogonal polynomials“. In NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965368.
Der volle Inhalt der QuelleBremler-Barr, Anat, Yotam Harchol, David Hay und Yacov Hel-Or. „Encoding Short Ranges in TCAM Without Expansion“. In SPAA '16: 28th ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2935764.2935769.
Der volle Inhalt der QuelleFeng, X., Z. Meng und I. H. Sudborough. „Improved upper bound for sorting by short swaps“. In 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings. IEEE, 2004. http://dx.doi.org/10.1109/ispan.2004.1300465.
Der volle Inhalt der QuelleKirousis, Lefteris. „Coloring Random Graphs: A Short Survey“. In 2009 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2009. http://dx.doi.org/10.1109/synasc.2009.8.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Shorův algoritmus"
Asquith, Paul, Rebecca Oman und Christopher Safaya. Short Sales and Trade Classification Algorithms. Cambridge, MA: National Bureau of Economic Research, Juli 2008. http://dx.doi.org/10.3386/w14158.
Der volle Inhalt der QuellePlimpton, S. Fast parallel algorithms for short-range molecular dynamics. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/10176421.
Der volle Inhalt der QuelleCable, S., T. Tajima und K. Umegaki. Particle simulation algorithms with short-range forces in MHD and fluid flow. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/6970874.
Der volle Inhalt der QuelleCable, S., T. Tajima und K. Umegaki. Particle simulation algorithms with short-range forces in MHD and fluid flow. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/10181739.
Der volle Inhalt der QuelleAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, Juni 2021. http://dx.doi.org/10.18235/0003313.
Der volle Inhalt der QuelleDownard, Alicia, Stephen Semmens und Bryant Robbins. Automated characterization of ridge-swale patterns along the Mississippi River. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40439.
Der volle Inhalt der QuelleRuiz, Pablo, Craig Perry, Alejando Garcia, Magali Guichardot, Michael Foguer, Joseph Ingram, Michelle Prats, Carlos Pulido, Robert Shamblin und Kevin Whelan. The Everglades National Park and Big Cypress National Preserve vegetation mapping project: Interim report—Northwest Coastal Everglades (Region 4), Everglades National Park (revised with costs). National Park Service, November 2020. http://dx.doi.org/10.36967/nrr-2279586.
Der volle Inhalt der Quelle