Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Shor Algorithm“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Shor Algorithm" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Shor Algorithm"
Monz, T., D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang und R. Blatt. „Realization of a scalable Shor algorithm“. Science 351, Nr. 6277 (03.03.2016): 1068–70. http://dx.doi.org/10.1126/science.aad9480.
Der volle Inhalt der QuelleCherckesova, Larissa, Olga Safaryan, Pavel Razumov, Irina Pilipenko, Yuriy Ivanov und Ivan Smirnov. „Speed improvement of the quantum factorization algorithm of P. Shor by upgrade its classical part“. E3S Web of Conferences 224 (2020): 01016. http://dx.doi.org/10.1051/e3sconf/202022401016.
Der volle Inhalt der QuelleAVILA, M. A. „MINIMAL EXECUTION TIME OF SHOR'S ALGORITHM AT LOW TEMPERATURES“. International Journal of Quantum Information 07, Nr. 01 (Februar 2009): 287–96. http://dx.doi.org/10.1142/s0219749909004475.
Der volle Inhalt der QuelleLerner, E. Yu. „Prime witnesses in the Shor algorithm and the Miller-Rabin algorithm“. Russian Mathematics 52, Nr. 12 (Dezember 2008): 36–40. http://dx.doi.org/10.3103/s1066369x08120062.
Der volle Inhalt der QuelleHlukhov, V. „CAPACITIVE COMPLEXITY OF DETERMINING GCD IN THE SHOR S ALGORITHM“. ELECTRICAL AND COMPUTER SYSTEMS 33, Nr. 108 (30.11.2020): 26–32. http://dx.doi.org/10.15276/eltecs.32.108.2020.3.
Der volle Inhalt der QuelleEkerå, Martin. „On post-processing in the quantum algorithm for computing short discrete logarithms“. Designs, Codes and Cryptography 88, Nr. 11 (06.08.2020): 2313–35. http://dx.doi.org/10.1007/s10623-020-00783-2.
Der volle Inhalt der QuelleKiseliova, O. M., O. M. Prytomanova und V. H. Padalko. „APPLICATION OF THE THEORY OF OPTIMAL SET PARTITIONING BEFORE BUILDING MULTIPLICATIVELY WEIGHTED VORONOI DIAGRAM WITH FUZZY PARAMETERS“. EurasianUnionScientists 6, Nr. 2(71) (2020): 30–35. http://dx.doi.org/10.31618/esu.2413-9335.2020.6.71.615.
Der volle Inhalt der QuellePlesa, Mihail-Iulian, und Togan Mihai. „A New Quantum Encryption Scheme“. Advanced Journal of Graduate Research 4, Nr. 1 (22.06.2018): 59–67. http://dx.doi.org/10.21467/ajgr.4.1.59-67.
Der volle Inhalt der QuelleGhisi, F., und S. V. Ulyanov. „The information role of entanglement and interference operators in Shor quantum algorithm gate dynamics“. Journal of Modern Optics 47, Nr. 12 (Oktober 2000): 2079–90. http://dx.doi.org/10.1080/09500340008235130.
Der volle Inhalt der QuelleUlyanov, F. Ghisi, S. V. „The information role of entanglement and interference operators in Shor quantum algorithm gate dynamics“. Journal of Modern Optics 47, Nr. 12 (15.10.2000): 2079–90. http://dx.doi.org/10.1080/095003400419933.
Der volle Inhalt der QuelleDissertationen zum Thema "Shor Algorithm"
MARTINS, ROBERTO CINTRA. „SHOR S FACTORING ALGORITHM“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35511@1.
Der volle Inhalt der QuelleA dissertação apresenta detalhadamente o algoritmo de fatoração de Shor, tanto em termos de sua execução passo a passo como mediante sua representação em forma de circuito, abordando aspectos tanto de sua parte clássica como de sua parte quântica. Inicialmente são apresentados aspectos de teoria dos números indispensáveis para a compreensão do algoritmo e em seguida são desenvolvidos conceitos e propriedades de mecânica quântica e de informação quântica pertinentes. Em atenção ao caráter eminentemente estocástico do algoritmo realiza-se um estudo de sua fonte estocástica e demonstram-se os principais teoremas que embasam a avaliação de sua probabilidade de sucesso. Desenvolvem-se exemplos de simulação clássica do algoritmo. Finalmente, a eficiência do algoritmo de fatoração de Shor é comparada com a de algoritmos clássicos.
The dissertation presents in detail Shor s factoring algorithm, including its execution step by step and its representation in the form of a circuit, addressing aspects of both its classical and its quantum parts. Aspects of number theory indispensable to understand the algorithm are presented, followed by a development of concepts and properties of quantum mechanics and quantum information. Considering the eminently stochastic character of the algorithm, a study of its stochastic source is carried out and the main theorems that support the evaluation of its probability of success are proved. Examples of classical simulation of the algorithm are developed. Finally, the efficiency of Shor s factoring algorithm is compared with that of classical algorithms.
Nwaokocha, Martyns. „Shorův algoritmus v kvantové kryptografii“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445457.
Der volle Inhalt der QuelleNyman, Peter. „Representation of Quantum Algorithms with Symbolic Language and Simulation on Classical Computer“. Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-2329.
Der volle Inhalt der QuelleUtvecklandet av kvantdatorn är ett ytterst lovande projekt som kombinerar teoretisk och experimental kvantfysik, matematik, teori om kvantinformation och datalogi. Under första steget i utvecklandet av kvantdatorn låg huvudintresset på att skapa några algoritmer med framtida tillämpningar, klargöra grundläggande frågor och utveckla en experimentell teknologi för en leksakskvantdator som verkar på några kvantbitar. Då dominerade förväntningarna om snabba framsteg bland kvantforskare. Men det verkar som om dessa stora förväntningar inte har besannats helt. Många grundläggande och tekniska problem som dekoherens hos kvantbitarna och instabilitet i kvantstrukturen skapar redan vid ett litet antal register tvivel om en snabb utveckling av kvantdatorer som verkligen fungerar. Trots detta kan man inte förneka att stora framsteg gjorts inom kvantteknologin. Det råder givetvis ett stort gap mellan skapandet av en leksakskvantdator med 10-15 kvantregister och att t.ex. tillgodose de tekniska förutsättningarna för det projekt på 100 kvantregister som aviserades för några år sen i USA. Det är också uppenbart att svårigheterna ökar ickelinjärt med ökningen av antalet register. Därför är simulering av kvantdatorer i klassiska datorer en viktig del av kvantdatorprojektet. Självklart kan man inte förvänta sig att en kvantalgoritm skall lösa ett NP-problem i polynomisk tid i en klassisk dator. Detta är heller inte syftet med klassisk simulering. Den klassiska simuleringen av kvantdatorer kommer att täcka en del av gapet mellan den teoretiskt matematiska formuleringen av kvantmekaniken och ett förverkligande av en kvantdator. Ett av de viktigaste problemen i vetenskapen om kvantdatorn är att utveckla ett nytt symboliskt språk för kvantdatorerna och att anpassa redan existerande symboliska språk för klassiska datorer till kvantalgoritmer. Denna avhandling ägnas åt en anpassning av det symboliska språket Mathematica till kända kvantalgoritmer och motsvarande simulering i klassiska datorer. Konkret kommer vi att representera Simons algoritm, Deutsch-Joszas algoritm, Grovers algoritm, Shors algoritm och kvantfelrättande koder i det symboliska språket Mathematica. Vi använder samma stomme i alla dessa algoritmer. Denna stomme representerar de karaktäristiska egenskaperna i det symboliska språkets framställning av kvantdatorn och det är enkelt att inkludera denna stomme i framtida algoritmer.
Quantum computing is an extremely promising project combining theoretical and experimental quantum physics, mathematics, quantum information theory and computer science. At the first stage of development of quantum computing the main attention was paid to creating a few algorithms which might have applications in the future, clarifying fundamental questions and developing experimental technologies for toy quantum computers operating with a few quantum bits. At that time expectations of quick progress in the quantum computing project dominated in the quantum community. However, it seems that such high expectations were not totally justified. Numerous fundamental and technological problems such as the decoherence of quantum bits and the instability of quantum structures even with a small number of registers led to doubts about a quick development of really working quantum computers. Although it can not be denied that great progress had been made in quantum technologies, it is clear that there is still a huge gap between the creation of toy quantum computers with 10-15 quantum registers and, e.g., satisfying the technical conditions of the project of 100 quantum registers announced a few years ago in the USA. It is also evident that difficulties increase nonlinearly with an increasing number of registers. Therefore the simulation of quantum computations on classical computers became an important part of the quantum computing project. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation. Classical simulation of quantum computations will cover part of the gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. One of the most important problems in "quantum computer science" is the development of new symbolic languages for quantum computing and the adaptation of existing symbolic languages for classical computing to quantum algorithms. The present thesis is devoted to the adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulation on the classical computer. Concretely we shall represent in the Mathematica symbolic language Simon's algorithm, the Deutsch-Josza algorithm, Grover's algorithm, Shor's algorithm and quantum error-correcting codes. We shall see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include this framework in future algorithms.
Drobouchevitch, Inna G. „Design and analysis of algorithms for short-route shop scheduling problems“. Thesis, University of Greenwich, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285392.
Der volle Inhalt der QuelleBlum, Christian. „Metaheuristics for Group Shop Scheduling“. Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211345.
Der volle Inhalt der QuelleTa, Quang-Chieu. „Matheuristic algorithms for minimizing total tardiness in flow shop scheduling problems“. Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4002/document.
Der volle Inhalt der QuelleWe consider in this thesis a permutation flow shop scheduling problem where a set of jobs have to be scheduled on a set of machines. The jobs have to be processed on the machines in the same order. The objective is to minimize the total tardiness. We propose heuristic algorithms and many new matheuristic algorithms for this problem. The matheuristic methods are a new type of approximated algorithms that have been proposed for solving combinatorial optimization problems. These methods embed exact resolution into (meta)heuristic approaches. This type of resolution method has received a great interest because of their very good performances for solving some difficult problems. We present the basic concepts and components of a scheduling problem and the aspects related to these components. We also give a brief introduction to the theory of scheduling and present an overview of resolution methods. Finally, we consider a problem where m-machine permutation flow shop scheduling problem and a vehicle routing problem are integrated and the objective is to minimize the total tardiness. We introduce a direct coding for a complete solution and a Tabu search for finding a sequence and trips. The results show that the TS greatly improves the initial solution given by EDD heuristic where each trip serves only one job at a time
Bandini, Michele. „Crittografia quantistica e algoritmo di Shor“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17073/.
Der volle Inhalt der QuelleKugel, Felix. „Das Shor-Verfahren als stochastischer Algorithmus“. [S.l.] : [s.n.], 2006. http://137.193.200.177/ediss/kugel-felix/meta.html.
Der volle Inhalt der QuelleWeyer, Anne. „The Brute Force Algorithm“. Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1555605680617133.
Der volle Inhalt der QuelleLarabi, Mohand. „Le problème de job-shop avec transport : modélisation et optimisation“. Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2010. http://tel.archives-ouvertes.fr/tel-00625528.
Der volle Inhalt der QuelleBücher zum Thema "Shor Algorithm"
Song, Yingsheng. Genetic algorithms for job shop scheduling. [S.l: The Author], 2002.
Den vollen Inhalt der Quelle findenAsquith, Paul. Short sales and trade classification algorithms. Cambridge, MA: National Bureau of Economic Research, 2008.
Den vollen Inhalt der Quelle findenGeorge, Vairaktarakis, Hrsg. Flow shop scheduling: Theoretical results, algorithms, and applications. New York: Springer Verlag, 2013.
Den vollen Inhalt der Quelle findenDapporto, Paolo, Paola Paoli, Patrizia Rossi und Annalisa Guerri. The UTN program. Florence: Firenze University Press, 2001. http://dx.doi.org/10.36253/88-8453-032-6.
Der volle Inhalt der QuelleBurstein, Joseph. Exact numerical solutions of nonlinear differential equations, short algorithms: After three centuries of approximate methods. Boston: Metrics Press, 2002.
Den vollen Inhalt der Quelle findenJin tian bu xue ji qi xue xi, ming tian jiu bei ji qi qu dai: Cong Python ru shou + yan suan fa. Taibei Shi: Jia kui zi xun fa xing, 2017.
Den vollen Inhalt der Quelle finden1974-, Zomorodian Afra J., Hrsg. Advances in applied and computational topology: American Mathematical Society Short Course on Computational Topology, January 4-5, 2011, New Orleans, Louisiana. Providence, R.I: American Mathematical Society, 2012.
Den vollen Inhalt der Quelle findenDaji, Qiao, und SpringerLink (Online service), Hrsg. Quality, Reliability, Security and Robustness in Heterogeneous Networks: 7th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, QShine 2010, and Dedicated Short Range Communications Workshop, DSRC 2010, Houston, TX, USA, November 17-19, 2010, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenTschinkel, Yuri, Carlo Gasbarri, Steven Lu und Mike Roth. Rational points, rational curves, and entire holomorphic curves on projective varieties: CRM short thematic program, June 3-28, 2013, Centre de Recherches Mathematiques, Universite de Montreal, Quebec, Canada. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenLevitin, Anany, und Maria Levitin. Algorithmic Puzzles. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199740444.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Shor Algorithm"
LaPierre, Ray. „Shor Algorithm“. In The Materials Research Society Series, 177–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69318-3_13.
Der volle Inhalt der QuelleRaj, Gaurav, Dheerendra Singh und Abhishek Madaan. „Analysis of Classical and Quantum Computing Based on Grover and Shor Algorithm“. In Smart Computing and Informatics, 413–23. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5547-8_43.
Der volle Inhalt der QuelleBrucker, Peter. „Shop Scheduling Problems“. In Scheduling Algorithms, 145–228. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03612-9_6.
Der volle Inhalt der QuelleBrucker, Peter. „Shop Scheduling Problems“. In Scheduling Algorithms, 143–224. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03088-2_6.
Der volle Inhalt der QuelleBrucker, Peter. „Shop Scheduling Problems“. In Scheduling Algorithms, 155–239. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04550-3_6.
Der volle Inhalt der QuelleBrucker, Peter. „Shop Scheduling Problems“. In Scheduling Algorithms, 155–239. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24804-0_6.
Der volle Inhalt der Quellevan Heerdt, Gerco, Clemens Kupke, Jurriaan Rot und Alexandra Silva. „Learning Weighted Automata over Principal Ideal Domains“. In Lecture Notes in Computer Science, 602–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45231-5_31.
Der volle Inhalt der QuelleAmram, Gal, Suguman Bansal, Dror Fried, Lucas Martinelli Tabajara, Moshe Y. Vardi und Gera Weiss. „Adapting Behaviors via Reactive Synthesis“. In Computer Aided Verification, 870–93. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_41.
Der volle Inhalt der QuelleMattfeld, Dirk C. „Evolutionary Algorithms“. In Evolutionary Search and the Job Shop, 49–64. Heidelberg: Physica-Verlag HD, 1996. http://dx.doi.org/10.1007/978-3-662-11712-5_4.
Der volle Inhalt der QuelleBagchi, Tapan P. „Job Shop Scheduling“. In Multiobjective Scheduling by Genetic Algorithms, 109–35. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5237-6_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Shor Algorithm"
Yimsiriwattana, Anocha, und Samuel J. Lomonaco Jr. „Distributed quantum computing: a distributed Shor algorithm“. In Defense and Security, herausgegeben von Eric Donkor, Andrew R. Pirich und Howard E. Brandt. SPIE, 2004. http://dx.doi.org/10.1117/12.546504.
Der volle Inhalt der QuelleZhang, Xin, YaQian Zhao, RenGang Li, XueLei Li, ZhenHua Guo, XiaoMin Zhu und Gang Dong. „The Quantum Shor Algorithm Simulated on FPGA“. In 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2019. http://dx.doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00082.
Der volle Inhalt der QuelleChuang, Issac. „Experimental realization of a Shor-type quantum algorithm“. In International Conference on Quantum Information. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/icqi.2001.fqipa3.
Der volle Inhalt der QuelleYoung, Rupert, Philip Birch und Chris Chatwin. „A simplification of the Shor quantum factorization algorithm employing a quantum Hadamard transform“. In Pattern Recognition and Tracking XXIX, herausgegeben von Mohammad S. Alam. SPIE, 2018. http://dx.doi.org/10.1117/12.2309468.
Der volle Inhalt der QuelleCHOFFRUT, CHRISTIAN. „A SHORT INTRODUCTION TO AUTOMATIC GROUP THEORY“. In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0004.
Der volle Inhalt der QuelleLi, Qinbin, Bingsheng He und Dawn Song. „Practical One-Shot Federated Learning for Cross-Silo Setting“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/205.
Der volle Inhalt der QuelleScott, David, und L. A. Thomsen. „A Global Algorithm for Pore Pressure Prediction“. In Middle East Oil Show. Society of Petroleum Engineers, 1993. http://dx.doi.org/10.2118/25674-ms.
Der volle Inhalt der QuelleMorris, Christopher, Matthias Fey und Nils Kriege. „The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/618.
Der volle Inhalt der QuelleAmbainis, Andris. „Quantum algorithms a decade after shor“. In the thirty-sixth annual ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1007352.1007354.
Der volle Inhalt der QuelleSnover, Matthew, Bonnie Dorr und Richard Schwartz. „A lexically-driven algorithm for disfluency detection“. In HLT-NAACL 2004: Short Papers. Morristown, NJ, USA: Association for Computational Linguistics, 2004. http://dx.doi.org/10.3115/1613984.1614024.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Shor Algorithm"
Cao, Zhengjun, Lihua Liu und Andreas Christoforides. A Note on One Realization of a Scalable Shor Algorithm. Web of Open Science, Dezember 2020. http://dx.doi.org/10.37686/qrl.v1i2.81.
Der volle Inhalt der QuelleGuliashki, Vassil, und Leoneed Kirilov. Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Juni 2019. http://dx.doi.org/10.7546/crabs.2019.06.01.
Der volle Inhalt der QuelleAsquith, Paul, Rebecca Oman und Christopher Safaya. Short Sales and Trade Classification Algorithms. Cambridge, MA: National Bureau of Economic Research, Juli 2008. http://dx.doi.org/10.3386/w14158.
Der volle Inhalt der QuelleJones, Peter W., Andrei Osipov und Vladimir Rokhlin. A Randomized Approximate Nearest Neighbors Algorithm - A Short Version. Fort Belvoir, VA: Defense Technical Information Center, Januar 2011. http://dx.doi.org/10.21236/ada639824.
Der volle Inhalt der QuellePlimpton, S. Fast parallel algorithms for short-range molecular dynamics. Office of Scientific and Technical Information (OSTI), Mai 1993. http://dx.doi.org/10.2172/10176421.
Der volle Inhalt der QuelleAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, Juni 2021. http://dx.doi.org/10.18235/0003313.
Der volle Inhalt der QuelleCable, S., T. Tajima und K. Umegaki. Particle simulation algorithms with short-range forces in MHD and fluid flow. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/6970874.
Der volle Inhalt der QuelleCable, S., T. Tajima und K. Umegaki. Particle simulation algorithms with short-range forces in MHD and fluid flow. Office of Scientific and Technical Information (OSTI), Juli 1992. http://dx.doi.org/10.2172/10181739.
Der volle Inhalt der QuelleDownard, Alicia, Stephen Semmens und Bryant Robbins. Automated characterization of ridge-swale patterns along the Mississippi River. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40439.
Der volle Inhalt der QuelleAllen, Luke, Joon Lim, Robert Haehnel und Ian Dettwiller. Helicopter rotor blade multiple-section optimization with performance. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/41031.
Der volle Inhalt der Quelle