Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Shift correction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Shift correction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Shift correction"
Delhaye, Robert, Volker Rath, Alan G. Jones, Mark R. Muller und Derek Reay. „Correcting for static shift of magnetotelluric data with airborne electromagnetic measurements: a case study from Rathlin Basin, Northern Ireland“. Solid Earth 8, Nr. 3 (22.05.2017): 637–60. http://dx.doi.org/10.5194/se-8-637-2017.
Der volle Inhalt der QuelleAbdullah, Hikmat N., Thamir R. Saeed und Asaad H. Sahar. „Efficient error correcting scheme for chaos shift keying signals“. International Journal of Electrical and Computer Engineering (IJECE) 9, Nr. 5 (01.10.2019): 3550. http://dx.doi.org/10.11591/ijece.v9i5.pp3550-3557.
Der volle Inhalt der QuellePiotrowski, Tomasz, Krzysztof Kaczmarek, Agata Jodda, Adam Ryczkowski, Tomasz Bajon, George Rodrigues und Slav Yartsev. „Image guidance procedures in radiotherapy for prostate cancer and the influence of body mass index“. Journal of Radiotherapy in Practice 13, Nr. 4 (23.04.2014): 410–17. http://dx.doi.org/10.1017/s1460396914000193.
Der volle Inhalt der QuelleReichenbach, Alexandra, Angela Costello, Peter Zatka-Haas und Jörn Diedrichsen. „Mechanisms of responsibility assignment during redundant reaching movements“. Journal of Neurophysiology 109, Nr. 8 (15.04.2013): 2021–28. http://dx.doi.org/10.1152/jn.01052.2012.
Der volle Inhalt der QuelleReinertsen, Ingerid, Frank Lindseth, Christian Askeland, Daniel Høyer Iversen und Geirmund Unsgård. „Intra-operative correction of brain-shift“. Acta Neurochirurgica 156, Nr. 7 (03.04.2014): 1301–10. http://dx.doi.org/10.1007/s00701-014-2052-6.
Der volle Inhalt der QuelleAdmon, Uri. „Specimen shift correction in tilting experiments“. Ultramicroscopy 21, Nr. 3 (Januar 1987): 297. http://dx.doi.org/10.1016/0304-3991(87)90156-2.
Der volle Inhalt der QuelleJalilov, Ya R., V. Q. Verdiyev und T. Y. Jalilov. „Application of Cross-Section Corrective («Translation») Forces at Surgical Treatment for Scoliosis“. N.N. Priorov Journal of Traumatology and Orthopedics 19, Nr. 3 (15.09.2012): 14–19. http://dx.doi.org/10.17816/vto20120314-19.
Der volle Inhalt der QuelleSternberg, Ben K., James C. Washburne und Louise Pellerin. „Correction for the static shift in magnetotellurics using transient electromagnetic soundings“. GEOPHYSICS 53, Nr. 11 (November 1988): 1459–68. http://dx.doi.org/10.1190/1.1442426.
Der volle Inhalt der QuelleStieglitz, Lennart Henning, Christian Ayer, Kaspar Schindler, Markus Florian Oertel, Roland Wiest und Claudio Pollo. „Improved Localization of Implanted Subdural Electrode Contacts on Magnetic Resonance Imaging With an Elastic Image Fusion Algorithm in an Invasive Electroencephalography Recording“. Operative Neurosurgery 10, Nr. 4 (23.06.2014): 506–13. http://dx.doi.org/10.1227/neu.0000000000000473.
Der volle Inhalt der QuelleLiu, Yong Gang, Da Tong Qin, Zhen Zhen Lei und Rui Ding. „Intelligent Correction of Shift Schedule for Dual Clutch Transmissions Based on Different Driving Conditions“. Applied Mechanics and Materials 121-126 (Oktober 2011): 3982–87. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.3982.
Der volle Inhalt der QuelleDissertationen zum Thema "Shift correction"
Reinertsen, Ingerid R. „Vessel driven correction of brain-shift“. Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111865.
Der volle Inhalt der QuelleA deformable brain phantom was designed, constructed and characterized in order to serve as a gold standard in the validation of the registration algorithm. The reproducibility of the elastic deformation of the phantom was evaluated using MR imaging and surface measurements. The experiments showed that the phantom was well suited for MR and ultrasound imaging (B-mode and Doppler) with sub-millimeter reproducibility for the deformations.
Validation of the registration technique was then completed in three parts. First, the technique was tested and validated using realistic simulations where the results were compared to the known deformation. The registration technique recovered 75% of the deformation in the region of interest accounting for deformations as large as 20 mm.
Second, a phantom study was performed where both MR and ultrasound images of the phantom were obtained for three different deformations. The registration results based on MR data were used as a gold standard to evaluate the performance of the ultrasound based registration. On average, deformations of 7.5 mm magnitude were corrected to within 1.6 mm for the ultrasound based registration and 1.07 mm for the MR based registration. Finally, the registration algorithm was validated using five retrospective clinical data-sets. Because the true displacement remained unknown, the method was validated using homologous landmarks identified in the original data, the exclusion of selected vessels, and finally manual segmentation of non-vascular structures in anatomical data. The tracking of homologous landmarks show that the registration algorithm was able to correct the deformation to within 1.24 mm, and the validation using excluded vessels and anatomical structures show an accuracy close to 1 mm. Pre-processing of the data can be completed in 30 seconds per dataset, and registrations can be performed in less than 30 seconds. This makes the technique well suited for intra-operative use.
Liu, Wenjie. „Estimation and bias correction of the magnitude of an abrupt level shift“. Thesis, Linköpings universitet, Statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84618.
Der volle Inhalt der QuelleHopkins, Kevin S. „Error detection and correction for a multiple frequency quaternary phase shift keyed signal“. Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27027.
Der volle Inhalt der QuelleWong, Dominic P. C. „Nonredundant error correction of π/4-shift DQPSK systems for mobile and cellular system applications“. Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30120.
Der volle Inhalt der QuelleApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Meißner, Mirko [Verfasser], und Jürgen [Akademischer Betreuer] Hennig. „Chemical Shift Artefact Correction in 19F Magnetic Resonance Imaging = Korrektur des Artefakts der Chemischen Verschiebung in der 19F Magnetresonanzbildgebung“. Freiburg : Universität, 2014. http://d-nb.info/1123478813/34.
Der volle Inhalt der QuelleChen, Xi. „Automatic 13C Chemical Shift Reference Correction of Protein NMR Spectral Data Using Data Mining and Bayesian Statistical Modeling“. UKnowledge, 2019. https://uknowledge.uky.edu/biochem_etds/40.
Der volle Inhalt der QuelleLin, Jinsong, und Kamilo Feher. „BANDWIDTH EFFICIENCY AND BER PERFORMANCE OF ENHANCED AND FEC CODED FQPSK“. International Foundation for Telemetering, 2000. http://hdl.handle.net/10150/607727.
Der volle Inhalt der QuelleBit error rate (BER) and bandwidth efficiency of several variations of enhanced Feher patented quadrature phase shift keying (FQPSK) [1] are described. An enhanced FQPSK increases the channel packing density of that of the IRIG 106-00 standardized FQPSK-B by approximately 50% in adjacent channel interference (ACI) environment. As the bandwidth efficiency of FQPSK-B DOUBLES (2×) that of pulse code modulation/Frequency modulation (PCM/FM) [5], the enhanced FQPSK, with a simpler transceiver than FQPSK-B, has a channel packing density of TRIPLE (3×) that of PCM/FM. One of the other enhanced FQPSK prototypes has an end to end system loss of only 0.4 dB at BER=1x10^(-3) and 0.5 dB at BER=1x10^(-4) from ideal linearly amplified QPSK theory. The enhanced FQPSK has a simple architecture, thus is inexpensive and has small size, for ultra high bit rate implementation. With low redundancy forward error correction (FEC) coding which expands the spectrum by approximately 10%, further improvement of about 3-4.5dB E N b o is attained with NLA FQPSK-B and enhanced FQPSK at BER=1x10^(-5) .
Endstrasser, Zdeněk. „Kalibrace a interpretace obrazových dat měřených zařízením LEEM“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443243.
Der volle Inhalt der QuelleGrimnell, Mikael, und Mats Tjäder. „Efficient Message Passing Decoding Using Vector-based Messages“. Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5205.
Der volle Inhalt der QuelleThe family of Low Density Parity Check (LDPC) codes is a strong candidate to be used as Forward Error Correction (FEC) in future communication systems due to its strong error correction capability. Most LDPC decoders use the Message Passing algorithm for decoding, which is an iterative algorithm that passes messages between its variable nodes and check nodes. It is not until recently that computation power has become strong enough to make Message Passing on LDPC codes feasible. Although locally simple, the LDPC codes are usually large, which increases the required computation power. Earlier work on LDPC codes has been concentrated on the binary Galois Field, GF(2), but it has been shown that codes from higher order fields have better error correction capability. However, the most efficient LDPC decoder, the Belief Propagation Decoder, has a squared complexity increase when moving to higher order Galois Fields. Transmission over a channel with M-PSK signalling is a common technique to increase spectral efficiency. The information is transmitted as the phase angle of the signal.
The focus in this Master’s Thesis is on simplifying the Message Passing decoding when having inputs from M-PSK signals transmitted over an AWGN channel. Symbols from higher order Galois Fields were mapped to M-PSK signals, since M-PSK is very bandwidth efficient and the information can be found in the angle of the signal. Several simplifications of the Belief Propagation has been developed and tested. The most promising is the Table Vector Decoder, which is a Message Passing Decoder that uses a table lookup technique for check node operations and vector summation as variable node operations. The table lookup is used to approximate the check node operation in a Belief Propagation decoder. Vector summation is used as an equivalent operation to the variable node operation. Monte Carlo simulations have shown that the Table Vector Decoder can achieve a performance close to the Belief Propagation. The capability of the Table Vector Decoder depends on the number of reconstruction points and the placement of them. The main advantage of the Table Vector Decoder is that its complexity is unaffected by the Galois Field used. Instead, there will be a memory space requirement which depends on the desired number of reconstruction points.
Reymond, Cédric. „Conception d'une structure innovante de convertisseur AC-DC de type Totem-pole avec correction du facteur de puissance : application aux chargeurs de batteries des véhicules électriques“. Thesis, Tours, 2019. http://www.theses.fr/2019TOUR4015.
Der volle Inhalt der QuelleGovernments empower states over the environment with implementation of solution to clean up the electricity production sources. In 2020, 20% of the produced energy will be generated by renewable energies. However, theses green energies are occasional and require a huge storage capacitance for the local smart grids management. This solution puts two new issues: the necessity of having a bidirectional converter and the inrush currents management. To facilitate the study of these problems, the thesis suggests binding through a power balance, the performances of the current limiter on an innovative topology converter. This analysis highlight an alternative solution of inrush current strategy in energy conversion. Finally, a novel control circuit for SCRs/Triacs components will be proposed and characterized for landing one of the constraints linked to the converter reversibility
Bücher zum Thema "Shift correction"
Hopkins, Kevin S. Error detection and correction for a multiple frequency quaternary phase shift keyed signal. Monterey, Calif: Naval Postgraduate School, 1989.
Den vollen Inhalt der Quelle findenHoorn, Ewout J., und Robert Zietse. Approach to the patient with hyponatraemia. Herausgegeben von Robert Unwin. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0028.
Der volle Inhalt der QuelleNguyen, Kim-Phuong, und Chris D. Glover. Anesthetic Considerations for Scoliosis Repair. Herausgegeben von Erin S. Williams, Olutoyin A. Olutoye, Catherine P. Seipel und Titilopemi A. O. Aina. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190678333.003.0032.
Der volle Inhalt der QuelleMorawetz, Klaus. Nonlocal Collision Integral. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0013.
Der volle Inhalt der QuelleMorawetz, Klaus. Properties of Non-Instant and Nonlocal Corrections. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0014.
Der volle Inhalt der QuelleVan Baalen, Susan. Islam in American Prisons. Herausgegeben von Jane I. Smith und Yvonne Yazbeck Haddad. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199862634.013.014.
Der volle Inhalt der QuelleBuchteile zum Thema "Shift correction"
Bellucci, Stefano, Bhupendra Nath Tiwari und Neeraj Gupta. „Phase Shift Correction“. In Geometrical Methods for Power Network Analysis, 61–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33344-6_7.
Der volle Inhalt der QuelleGussen, Benjamen. „Correction to: Axial Shift“. In Axial Shift, C1—C2. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6950-6_15.
Der volle Inhalt der QuelleReinertsen, Ingerid, Maxime Descoteaux, Simon Drouin, Kaleem Siddiqi und D. Louis Collins. „Vessel Driven Correction of Brain Shift“. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, 208–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30136-3_27.
Der volle Inhalt der QuelleCastrén, E. A., und J. A. Pohjonen. „Phase Image Correction for Magnetic Resonance Chemical Shift Imaging“. In Computer Assisted Radiology / Computergestützte Radiologie, 46–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-00807-2_8.
Der volle Inhalt der QuelleCamellin, Massimo, Diego Ponzin und Samuel Arba-Mosquera. „Solving Refractive Complications after RK Correction of Hyperopic Shift“. In Difficult and Complicated Cases in Refractive Surgery, 425–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55238-0_93.
Der volle Inhalt der QuelleSoza, Grzegorz, Peter Hastreiter, Fernando Vega, Christof Rezk-Salama, Michael Bauer, Christopher Nimsky und Günther Greiner. „Non-linear Intraoperative Correction of Brain Shift with 1.5 T Data“. In Informatik aktuell, 21–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-18993-7_5.
Der volle Inhalt der QuelleWein, Wolfgang. „Brain-Shift Correction with Image-Based Registration and Landmark Accuracy Evaluation“. In Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation, 146–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01045-4_17.
Der volle Inhalt der QuelleKasahara, Tamiko. „Correction to: Knowledge Transfer and Creation Systems: Perspectives on Corporate Socialization Mechanisms and Human Resource Management“. In Paradigm Shift in Technologies and Innovation Systems, C1. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9350-2_12.
Der volle Inhalt der QuelleSaitoh, Yuichi, Ikuyo Ibe und Hideki Imai. „Peak-shift and bit error-correction with channel side information in runlength-limited sequences“. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 304–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56686-4_52.
Der volle Inhalt der QuelleLi, Rui, Xinsheng Huang, Ruitao Lu und Lurong Shen. „Infrared Small Target Tracking Algorithm Based on Fusion Feature Matching and Mean Shift Correction“. In Advances in Intelligent Systems and Computing, 595–603. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1759-6_68.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Shift correction"
Schonewille, Michel. „Regularization with azimuth time‐shift correction“. In SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817695.
Der volle Inhalt der QuelleSternberg, Ben K., James C. Washburne und Robert G. Anderson. „Investigation of MT static shift correction methods“. In 1985 SEG Technical Program Expanded Abstracts. SEG, 1985. http://dx.doi.org/10.1190/1.1892688.
Der volle Inhalt der QuelleShihara, Tetsuya, Hiromichi Ishibashi, Katsuya Watanabe und Shin-ichi Kadowaki. „Lens shift correction for DVD-RAM tracking servo“. In International Symposium on Optical Memory and Optical Data Storage. SPIE, 1999. http://dx.doi.org/10.1117/12.997639.
Der volle Inhalt der QuelleZamyatin, Alexander A., Ilmar A. Hein, Michael D. Silver und Satoru Nakanishi. „Up-sampling with Shift Method for Windmill Correction“. In 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.354371.
Der volle Inhalt der QuellePham, Tuan Q., und Matthew Duggan. „Bidirectinal bias correction for Gradient-Based Shift Estimation“. In 2008 15th IEEE International Conference on Image Processing. IEEE, 2008. http://dx.doi.org/10.1109/icip.2008.4711883.
Der volle Inhalt der QuelleGonzalez, J., D. Sosa-Cabrera, M. Ortega, J. A. Gil, A. Tristan, E. Munoz-Moreno, R. de Luis-Garcia und R. Cardenes. „P2C-3 Ultrasound Based Intraoperative Brain Shift Correction“. In 2007 IEEE Ultrasonics Symposium Proceedings. IEEE, 2007. http://dx.doi.org/10.1109/ultsym.2007.395.
Der volle Inhalt der QuelleTang, Wenwu, Yaoguo Li, Douglas W. Oldenburg und Jianxin Liu. „Magnetotelluric static shift correction using an equivalent source technique“. In SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-1621.1.
Der volle Inhalt der QuelleGoossens, Thomas, Kathleen Vunckx, Andy Lambrechts und Chris Van Hoof. „Spectral Shift Correction for Fabry-Perot Based Spectral Cameras“. In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2019. http://dx.doi.org/10.1109/whispers.2019.8920890.
Der volle Inhalt der QuelleZhang, Kun, und Jiayong Yan. „The 3D magnetotelluric inversion system with static shift correction“. In 7th International Conference on Environment and Engineering Geophysics & Summit Forum of Chinese Academy of Engineering on Engineering Science and Technology. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/iceeg-16.2016.105.
Der volle Inhalt der QuelleMakarau, Aliaksei, Henkjan Huisman, Roel Mus, Miranda Zijp und Nico Karssemeijer. „Breast MRI intensity non-uniformity correction using mean-shift“. In SPIE Medical Imaging, herausgegeben von Nico Karssemeijer und Ronald M. Summers. SPIE, 2010. http://dx.doi.org/10.1117/12.845612.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Shift correction"
Erck, R. A. Correction of energy shift in measurements of solute segregation by Rutherford backscattering spectroscopy. Office of Scientific and Technical Information (OSTI), Februar 1991. http://dx.doi.org/10.2172/10142456.
Der volle Inhalt der QuelleBrown, Tristan Brooks, und Matthew James Devlin. Gain Shift Corrections at Chi-Nu. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1312624.
Der volle Inhalt der QuelleRhoades-Brown, M. J. Analytic Evaluation of Tune Shift Due to Octupole Corrections. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/1119103.
Der volle Inhalt der QuelleMcConville, G. T. Analysis of phase shift calculations used in second virial corrections for helium gas thermometry. Office of Scientific and Technical Information (OSTI), März 1989. http://dx.doi.org/10.2172/6450923.
Der volle Inhalt der Quelle