Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Shelf life of foods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Shelf life of foods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Shelf life of foods"
Vasavada, Purnendu C. „Shelf life evaluation of foods“. Trends in Food Science & Technology 7, Nr. 2 (Februar 1996): 69–70. http://dx.doi.org/10.1016/0924-2244(96)81349-5.
Der volle Inhalt der QuelleKroger, Manfred. „Shelf-life evaluation of foods“. LWT - Food Science and Technology 28, Nr. 4 (Januar 1995): 453. http://dx.doi.org/10.1016/0023-6438(95)90040-3.
Der volle Inhalt der QuelleSkovgaard, Niels. „Shelf-life evaluation of foods“. International Journal of Food Microbiology 65, Nr. 1-2 (April 2001): 141–42. http://dx.doi.org/10.1016/s0168-1605(00)00494-3.
Der volle Inhalt der QuelleStiles, M. E. „Refrigerated Foods with Extended Shelf Life“. Canadian Institute of Food Science and Technology Journal 21, Nr. 4 (Oktober 1988): 372. http://dx.doi.org/10.1016/s0315-5463(88)70970-0.
Der volle Inhalt der QuelleLIVINGSTON, G. E. „EXTENDED SHELF-LIFE CHILLED PREPARED FOODS“. Foodservice Research International 3, Nr. 4 (Dezember 1985): 221–30. http://dx.doi.org/10.1111/j.1745-4506.1985.tb00069.x.
Der volle Inhalt der QuelleCaggiano, Giuseppina, Giusy Diella, Paolo Trerotoli, Marco Lopuzzo, Francesco Triggiano, Massimo Ricci, Vincenzo Marcotrigiano, Maria Teresa Montagna und Osvalda De Giglio. „A Pilot Survey on Hygienic–Sanitary Characteristics of Ready-To-Eat Sauces and Pesto“. International Journal of Environmental Research and Public Health 17, Nr. 14 (12.07.2020): 5005. http://dx.doi.org/10.3390/ijerph17145005.
Der volle Inhalt der QuelleClodoveo, Maria Lisa, Marilena Muraglia, Vincenzo Fino, Francesca Curci, Giuseppe Fracchiolla und Filomena Faustina Rina Corbo. „Overview on Innovative Packaging Methods Aimed to Increase the Shelf-Life of Cook-Chill Foods“. Foods 10, Nr. 9 (03.09.2021): 2086. http://dx.doi.org/10.3390/foods10092086.
Der volle Inhalt der QuelleUdayakumar, Srusti, Dissanayake M. D. Rasika, Hasitha Priyashantha, Janak K. Vidanarachchi und Chaminda Senaka Ranadheera. „Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages“. Applied Sciences 12, Nr. 22 (18.11.2022): 11737. http://dx.doi.org/10.3390/app122211737.
Der volle Inhalt der QuelleKearsley, M. W. „The shelf life of foods and beverages“. Food Chemistry 26, Nr. 4 (Januar 1987): 316–17. http://dx.doi.org/10.1016/0308-8146(87)90074-4.
Der volle Inhalt der QuelleDawson, Paul, Wesam Al-Jeddawi und Nanne Remington. „Effect of Freezing on the Shelf Life of Salmon“. International Journal of Food Science 2018 (12.08.2018): 1–12. http://dx.doi.org/10.1155/2018/1686121.
Der volle Inhalt der QuelleDissertationen zum Thema "Shelf life of foods"
Gibson, Michael W. „Physico-chemical and shelf-life between baked and extruded pet foods“. Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20410.
Der volle Inhalt der QuelleGrain Science and Industry
Sajid Alavi
The U.S. pet food market was approximately worth $22 billion in 2013. Further growth is predicted at a pace faster than most major human food product categories. More than 60% of pet food products are processed using extrusion, and a significant proportion is produced using baking. However, research is lacking on fundamental process and product differences between extrusion and baking. The current study focuses on this aspect and also in-depth characterization of process and product quality. Three iso-nutritional diets were formulated for dry expanded dog food using 0%, 7% and 15% fresh meat inclusion. Major variations between diets were inclusion rates of mechanically deboned chicken, cereal grains, and poultry fat. Each diet was processed with a single screw extruder using various thermal and/or mechanical energy inputs (obtained by varying pre-conditioner stem injection and/or extruder screw speeds). Diets were also processed by baking using a 30 foot experimental oven at 425°F, although the fresh meat inclusion was at 0%, 10% and 20% levels. Proximate analysis of products was conducted. Products were also characterized for physico-chemical properties such as bulk density, piece density, expansion ratio, degree of gelatinization and textural attributes. As fresh meat inclusion increased (0–15%), expansion ratio (4.1–3.5) decreased irrespective of extrusion treatment. Expansion was not evident in the baked kibbles, and bulk and piece densities were up to 56% higher for baked versus extruded kibbles. Textural analysis of extruded kibbles revealed serrated force-deformation response, typical of cellular products, with peak hardness of 2.9–1.5 kgf. On the other hand, baked products had a ‘smooth’ force-deformation response with higher peak hardness than extruded products (up to 3 kgf). Microbial counts for baked products were higher than extruded products, and rancidity profiles as obtained from gas chromatography also had marked differences. The extrusion process was characterized by detailed mass and energy balance analyses, and compared with baking that lacks mechanical energy input. Results from this study provide a useful bench-mark for dry expanded pet food product quality and commonly used processing technologies.
Tyrer, Helen Linsey. „The effect of storage temperature on the measured predicted shelf life of chilled prepared foods“. Thesis, Manchester Metropolitan University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266441.
Der volle Inhalt der QuelleLarsen, Ross Allen Andrew. „Food Shelf Life: Estimation and Experimental Design“. Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1315.pdf.
Der volle Inhalt der QuelleWeber, Rebecca J. „Shelf life extension of corn tortillas“. Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1115.
Der volle Inhalt der QuelleYoung, Helen M. „Factors affecting the quality and shelf-life of cooked chilled foods with special reference to full meal vending“. Thesis, Bournemouth University, 1986. http://eprints.bournemouth.ac.uk/424/.
Der volle Inhalt der QuelleFeliciano, Lizanel. „Shelf-life Extension of Seafood Using Sanitized Ice“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1252965039.
Der volle Inhalt der QuelleMohammadbeygy, Tina. „Shelf life extension of preformed pizza using ultraviolet light“. Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123317.
Der volle Inhalt der QuelleLa pizza pré-cuisinée est couramment contaminée par la moisissure. Puisque la contamination pourrait se produire durant les procédés d'après cuisson, d'autres mesures, en plus de l'emballage, sont nécessaires pour assurer la sécurité permanente des pizzas pré-cuisinée. Cette recherche a examiné l'utilisation de la lumière UV pulsée pour décontaminer Penicillium roqueforti sur la surface de l'agar solide, du pain et de pizzas préformées.Dans la première étape de la présente étude, les paramètres critiques du procédé ont été optimisés pour améliorer l'efficacité des traitements à la lumière pulsée. Les boîtes de Petri inoculées avec Penicillium roqueforti ont été traitées 10 min dans une chambre de traitement pour les trois premiers niveaux d'efficacité (5, 10 et 15 cm). Les résultats démontrent que 30, 75 et 90 pour cent de la surface du plateau a été exposée à la lumière pulsée à 5, 10 et 15 cm respectivement de la source lumineuse. La réduction en log de la population de E. coli traitée par la lumière UV pulsée varie de 1.4 à 2.05 log UFC ml-1.Dans la deuxième phase de l'étude, la cohérence de la croissance des moisissures (Penicillium roqueforti) sur la surface du pain plat a été étudiée en utilisant deux méthodes différentes d'inoculation : par inoculation ponctuelle aléatoire et par étalement. Deux populations d'inoculum différentes (102 et 103 UFC ml-1) ont également été utilisées pour évaluer l'effet de la densité de l'inoculum sur la distribution et la cohérence de la croissance de moisissures. Les échantillons inoculés avec 102 UFC ml-1 ont donné une distribution des colonies plus homogène. À la troisième phase de cette étude, l'analyse sensorielle et microbiologique, ont été utilisées pour évaluer l'efficacité du traitement à la lumière pulsée pour prolonger la durée de vie de la pizza et du pain. Jusqu'à 40 jours de prolongement de la durée de conservation a été obtenue pour 8, 32 et 40 pour cent des échantillons après un traitement à la lumière pulsée minimal, intermédiaire et maximal, respectivement. Dans la quatrième phase de l'étude, l'efficacité d'une lumière UV pulsée à large spectre a été évaluée pour la décontamination de Penicillium roqueforti sur la surface de l'agar solide. La population de Penicillium roqueforti a été réduite après 10 minutes d'exposition à la lumière pulsée par 3.74, 5.36 et 6.14 log UFC ml-1 respectivement pour 500, 750 et 1000 V. Les résultats présentés dans cette étude indiquent que d'inactivation a été mieux décrite par le modèle de Weibull avec la plus petite erreur de moyenne quadratique (RMSE) (R2 ≥ 0.92). Finalement, dans la dernière phase de l'étude, des méthodes dépendantes ou indépendantes des conditions de culture ont été appliquées pour étudier l'écologie des pizzas pré-cuisinées. La moyenne de la population des bactéries mésophiles aérobies (BMA), des bactéries mésophiles anaérobies (BMNA), des bactéries lactiques (BL), des moisissures et des levures (M+L) étaient respectivement de 6.6 ± 0.5, inférieur à 2.4, 2.8 ± 0.6 et 5.4 ± 0.4 log UFC g-1. Les méthodes moléculaires incorporant la PCR conventionnelle ciblant le gène de l'ARNr 18S des champignons, le clonage TA de fragments amplifiés par PCR et le séquençage ont été réalisées pour détecter les champignons altérant les pizzas pré-cuisinées naturellement contaminées. L'approche du clonage a permis l'identification présumée de souches de Saccharomyces cerevisiae, Saccharomyces sp. WW- W23, Penicillium expansum, Penicillium freii, Penicillium sp. HSL, Penicillium sp. ljg1, Rhodotorula mucilaginosa, Monascus fuliginosus, Hordeum jubatum , Geotrichum galactomyces ainsi que des champignons et eucaryotes non cultivés.Dans l'ensemble, la lumière UV pulsée a démontré avoir un potentiel d'utilisation pour la décontamination des microorganismes altérant les surfaces d'agar solide et les produits de boulangerie.
Gray, Morgan. „Evaluation of oxidized rendered protein meals in pet foods“. Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/20379.
Der volle Inhalt der QuelleGrain Science and Industry
Greg Aldrich
Rendered protein meal is an important source of dietary protein and fat in pet food. However, fats in rendered meals can oxidize rapidly if not protected. The most common measurement of oxidation is the peroxide value (PV), but the analysis is highly variable. Additionally, the incorporation of oxidized protein further shortens its shelf life. Therefore, our objectives were to evaluate methods to measure fat quality in rendered protein meals and to determine the effect of increasingly oxidized protein meals on the shelf life of extruded pet foods. In Experiment 1, samples of five chicken byproduct meals (CBPM) from each of three locations and five beef meat and bone meals (BMBM) from each of two locations were analyzed for PV, anisidine value (AV), and thiobarbituric acid reactive substances (TBARS). The PV varied by method and location (P < 0.05). The alternative oxidation analytical methods, AV and TBARS, were not strongly correlated to PV (R² > 0.01). In Experiment 2, one metric ton of each unpreserved CBPM and unpreserved BMBM were collected and left unpreserved (U) or preserved with either ethoxyquin (E) or mixed tocopherols (T). These were held at ambient conditions (25°C, 51% RH) and monitored for PV and AV until values plateaued (41 and 63 days for CBPM and BMBM, respectively). Each “aged” meal was then incorporated into a model extruded cat food diet (~30% protein). Samples of kibble for each treatment were collected and stored at an elevated temperature and humidity (40°C, 70% RH) for 18 weeks and an ambient temperature and humidity (~22°C, 45% RH) for 12 months. The initial reduction (P < 0.05) in PV of the U (highly oxidized) BMBM and CBPM after processing suggests oxidation levels were diluted by food production. The oxidized meal led to a shorter shelf life (P < 0.05) in the finished food by PV analysis; but, sensory analysis by quick assessment did not completely corroborate these findings. These results suggest that PV doesn’t fully describe rendered protein meal stability or have a direct impact on shelf life for consumers; but may have a negative impact on pets due to oxidized lipid consumption.
Lambert, Anne. „Effects of modified atmosphere packaging and low-dose irradiation on the shelf life and microbiological safety of fresh pork“. Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=70219.
Der volle Inhalt der QuelleChitundu, Elizabeth Malama. „Studies on the shelf life of macadamia nuts“. Thesis, Richmond, N.S.W. : School of Food Science, Faculty of Science and Technology, University of Western Sydney, Hawkesbury, 1994. http://handle.uws.edu.au:8081/1959.7/37.
Der volle Inhalt der QuelleBücher zum Thema "Shelf life of foods"
D, Man C. M., und Jones A. A, Hrsg. Shelf life evaluation of foods. Gaithersburg, Md: Aspen Publishers, 1999.
Den vollen Inhalt der Quelle findenD, Man C. M., und Jones A. A, Hrsg. Shelf-life evaluation of foods. 2. Aufl. Gaithersburg, MD: Aspen Publishers, 2000.
Den vollen Inhalt der Quelle findenMan, C. M. D., und A. A. Jones, Hrsg. Shelf Life Evaluation of Foods. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2095-5.
Der volle Inhalt der QuelleMan, C. M. D. Shelf Life Evaluation of Foods. Boston, MA: Springer US, 1994.
Den vollen Inhalt der Quelle findenKroll, Dorothy. Shelf life technology for processed foods. Norwalk, CT: Business Communications Co., 1995.
Den vollen Inhalt der Quelle findenCadwallader, Keith R., und Hugo Weenen, Hrsg. Freshness and Shelf Life of Foods. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0836.
Der volle Inhalt der QuelleTaormina, Peter J., und Margaret D. Hardin, Hrsg. Food Safety and Quality-Based Shelf Life of Perishable Foods. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54375-4.
Der volle Inhalt der QuelleMan, Dominic. Shelf life. Oxford: Blackwell Science, 2002.
Den vollen Inhalt der Quelle findenMan, Dominic. Shelf life. Oxford: Blackwell Science, 2002.
Den vollen Inhalt der Quelle finden1922-, Charalambous George, Hrsg. Shelf life studies of foods and beverages: Chemical, biological, physical, and nutritional aspects. Amsterdam: Elsevier, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Shelf life of foods"
Symons, H. „Frozen foods“. In Shelf Life Evaluation of Foods, 296–316. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2095-5_15.
Der volle Inhalt der QuelleMakroo, H. A., Preetisagar Talukdar, Baby Z. Hmar und Pranjal Pratim Das. „Frozen Foods“. In Shelf Life and Food Safety, 155–64. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-9.
Der volle Inhalt der QuelleMajid, Darakshan, Sajad Ahmad Sofi, Abida Jabeen, Farhana Mehraj Allai, H. A. Makroo und Shahnaz Parveen Wani. „Dried Foods“. In Shelf Life and Food Safety, 141–54. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-8.
Der volle Inhalt der QuelleNishad, Jyoti, Smruthi Jayarajan und K. Rama Krishna. „Chemical Treatment of Foods“. In Shelf Life and Food Safety, 197–226. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-12.
Der volle Inhalt der QuelleTongbram, Thoithoi, Jinku Bora und H. A. Makroo. „Fresh and Refrigerated Foods“. In Shelf Life and Food Safety, 113–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-7.
Der volle Inhalt der QuelleKaur, Gurkirat, Swati Kapoor und Neeraj Gandhi. „Foods with Edible Coatings“. In Shelf Life and Food Safety, 321–50. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-17.
Der volle Inhalt der QuelleManzoor, Arshied, Bisma Jan, Insha Zahoor, Nadira Anjum, Aarifa Nabi, Farhana Mehraj Allai, Qurat Ul Eain Hyder Rizvi, Rayees Ahmad Shiekh, Mohd Aaqib Sheikh und Saghir Ahmad. „Thermal Treatment of Foods“. In Shelf Life and Food Safety, 165–80. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-10.
Der volle Inhalt der QuelleRashed, Mahmoud Said, Mabrouk Sobhy und Shivani Pathania. „Active Packaging of Foods“. In Shelf Life and Food Safety, 253–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-14.
Der volle Inhalt der QuelleChoudhury, Nitamani, Farheena Iftikhar und H. A. Makroo. „Non-Thermal Processing of Foods“. In Shelf Life and Food Safety, 181–96. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091677-11.
Der volle Inhalt der QuelleSingh, R. P. „Scientific principles of shelf life evaluation“. In Shelf Life Evaluation of Foods, 3–26. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2095-5_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Shelf life of foods"
Perchonok, Michele H., Beverly Swango, Irene Stevens und Michelle Clynch. „Shelf Life Determination of Thermally Processed Foods“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2621.
Der volle Inhalt der QuelleSkudra, Liga, Karlis Loba und Daiga Kunkulberga. „Shelf life assessment of meat pies“. In 13th Baltic Conference on Food Science and Technology “FOOD. NUTRITION. WELL-BEING”. Latvia University of Life Sciences and Technologies. Faculty of Food Technology, 2019. http://dx.doi.org/10.22616/foodbalt.2019.046.
Der volle Inhalt der Quellebinti Ahmad Yazid, Nur Amalia, Noorsuhana binti Mohd Yusof und Nurul Asyikin Md Zaki. „Edible Coating Incorporated with Essential Oil for Enhancing Shelf-Life of Fruits: A Review“. In 5th International Conference on Global Sustainability and Chemical Engineering 2021 (ICGSCE2021). Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-b5i87r.
Der volle Inhalt der QuelleChang, Zhe, Jenneke Heising und Matthijs Dekker. „Antioxidant and antimicrobial active packaging systems“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/mqgt2284.
Der volle Inhalt der QuelleU., Alan, Endy S., Wagiman und Jumeri W. „Quality Deterioration and Shelf Life Determination of Purwaceng Coffee based on Packaging Variation using Accelerated Shelf Life Testing (ASLT)“. In The Food Ingredient Asia Conference (FiAC). SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0010546800003108.
Der volle Inhalt der QuelleFarkas, Daniel F., und Joseph A. Kapp. „Recent Advances in High Pressure Food Processing Equipment and Equipment Requirements to Meet New Process Needs“. In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1157.
Der volle Inhalt der QuelleNurrochman, Andrieanto, Arviansyah Hermawan, Karunia Budisatrio und Ekavianty Prajatelistia. „Effect of cinnamon oil on banana peel film as antibacterial agents to extent shelf-life of foods“. In 1ST INTERNATIONAL SEMINAR ON ADVANCES IN METALLURGY AND MATERIALS (i-SENAMM 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016283.
Der volle Inhalt der QuelleMaldonado-Alvarado, Pedro, und María Trujillo. „Gluten-Free Couscous Made from Quinoa Sprouts: Study of Shelf Life“. In la ValSe-Food 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/blsf2022017009.
Der volle Inhalt der QuelleBalasubramaniam, V. M. (Bala). „Non-Thermal Preservation of Fruit Juices“. In ASME 2008 Citrus Engineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/cec2008-5404.
Der volle Inhalt der QuellePopov, V., D. P. Janevska und R. Gospavic. „An HACCP approach integrating quantitative microbial risk assessment and shelf life prediction“. In FOOD AND ENVIRONMENT 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/fenv130121.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Shelf life of foods"
Cairo, Jessica, Iulia Gherman und Paul Cook. The effects of consumer freezing of food on its use-by date. Food Standards Agency, Juli 2021. http://dx.doi.org/10.46756/sci.fsa.ret874.
Der volle Inhalt der QuelleFriedman, Haya, Julia Vrebalov und James Giovannoni. Elucidating the ripening signaling pathway in banana for improved fruit quality, shelf-life and food security. United States Department of Agriculture, Oktober 2014. http://dx.doi.org/10.32747/2014.7594401.bard.
Der volle Inhalt der QuelleHolthuysen, Nancy, Stefanie Kremer und Hilke Bos-Brouwers. The effect of date marking terminology of products with a long shelf life on food discarding behaviour of consumers. Wageningen: Wageningen Food & Biobased Research, 2017. http://dx.doi.org/10.18174/428726.
Der volle Inhalt der QuelleFriedman, Haya, Julia Vrebalov, James Giovannoni und Edna Pesis. Unravelling the Mode of Action of Ripening-Specific MADS-box Genes for Development of Tools to Improve Banana Fruit Shelf-life and Quality. United States Department of Agriculture, Januar 2010. http://dx.doi.org/10.32747/2010.7592116.bard.
Der volle Inhalt der QuellePoverenov, Elena, Tara McHugh und Victor Rodov. Waste to Worth: Active antimicrobial and health-beneficial food coating from byproducts of mushroom industry. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7600015.bard.
Der volle Inhalt der QuelleSoden, J. M., und R. E. Anderson. W88 integrated circuit shelf life program. Office of Scientific and Technical Information (OSTI), Januar 1998. http://dx.doi.org/10.2172/565606.
Der volle Inhalt der QuelleLITTLE (ARTHUR D) INC CAMBRIDGE MA. Shelf-Life Specifications for Mission Readiness. Fort Belvoir, VA: Defense Technical Information Center, März 1993. http://dx.doi.org/10.21236/ada263030.
Der volle Inhalt der QuellePereira da Silva, F. I. Strawberry taste assessment during shelf life. Wageningen: Wageningen Food & Biobased Research, 2017. http://dx.doi.org/10.18174/503222.
Der volle Inhalt der QuelleDoyle, J. P. Seafood Shelf Life as a Function of Temperature. Alaska Sea Grant, University of Alaska Fairbanks, 1989. http://dx.doi.org/10.4027/sslft.1989.
Der volle Inhalt der QuelleCrowder, Stephen V. Statistical Framework for Planning a Component Shelf Life Program. Office of Scientific and Technical Information (OSTI), Februar 2017. http://dx.doi.org/10.2172/1346330.
Der volle Inhalt der Quelle