Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Shear localizations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Shear localizations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Shear localizations"
Chang, L. „On the Shear Bands and Shear Localizations in Elastohydrodynamic Lubrication Films“. Journal of Tribology 127, Nr. 1 (01.01.2005): 245–47. http://dx.doi.org/10.1115/1.1843157.
Der volle Inhalt der QuelleLee, J. H., und Y. Zhang. „A Finite-Element Work-Hardening Plasticity Model of the Uniaxial Compression and Subsequent Failure of Porous Cylinders Including Effects of Void Nucleation and Growth—Part II: Localization and Fracture Criteria“. Journal of Engineering Materials and Technology 118, Nr. 2 (01.04.1996): 169–78. http://dx.doi.org/10.1115/1.2804883.
Der volle Inhalt der QuelleVoyiadjis, George Z., Amin H. Almasri, Danial Faghihi und Anthony N. Palazotto. „Analytical solution for shear bands in cold-rolled 1018 steel“. Journal of the Mechanical Behaviour of Materials 20, Nr. 4-6 (01.06.2012): 89–102. http://dx.doi.org/10.1515/jmbm-2012-0001.
Der volle Inhalt der QuelleKudryashov, N. A., R. V. Muratov und P. N. Ryabov. „The collective behavior of shear strain localizations in dipolar materials“. Applied Mathematics and Computation 338 (Dezember 2018): 164–74. http://dx.doi.org/10.1016/j.amc.2018.06.005.
Der volle Inhalt der QuelleDeliveris, A. V., I. E. Zevgolis und N. C. Koukouzas. „NUMERICAL MODELLING OF SLOPE STABILITY IN OPEN PIT LIGNITE MINES: A COMPARATIVE STUDY“. Bulletin of the Geological Society of Greece 50, Nr. 2 (27.07.2017): 671. http://dx.doi.org/10.12681/bgsg.11773.
Der volle Inhalt der QuelleRice, James R. „Heating, weakening and shear localization in earthquake rupture“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, Nr. 2103 (21.08.2017): 20160015. http://dx.doi.org/10.1098/rsta.2016.0015.
Der volle Inhalt der QuellePrakash, Aditya, Tawqeer Nasir Tak, Namit N. Pai, S. V. S. Narayana Murty, P. J. Guruprasad, R. D. Doherty und Indradev Samajdar. „Slip band formation in low and high solute aluminum: a combined experimental and modeling study“. Modelling and Simulation in Materials Science and Engineering 29, Nr. 8 (11.11.2021): 085016. http://dx.doi.org/10.1088/1361-651x/ac3369.
Der volle Inhalt der QuelleBoulahia, R., Taoufik Boukharouba, Fahmi Zaïri, M. Naït-Abdelaziz, J. M. Gloaguen, R. Seguela und J. M. Lefebvre. „Successive Translucent and Opaque Shear Bands Accompanied by a Pronounced Periodic Waves Observed in a Polypropylene (PP) Processed by Single ECAE Pass“. Advanced Materials Research 423 (Dezember 2011): 12–25. http://dx.doi.org/10.4028/www.scientific.net/amr.423.12.
Der volle Inhalt der QuelleKatoh, Kazuo, und Yasuko Noda. „Distribution of Cytoskeletal Components in Endothelial Cells in the Guinea Pig Renal Artery“. International Journal of Cell Biology 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/439349.
Der volle Inhalt der QuelleAbed, Farid H., und George Z. Voyiadjis. „Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures“. International Journal for Multiscale Computational Engineering 5, Nr. 3-4 (2007): 325–49. http://dx.doi.org/10.1615/intjmultcompeng.v5.i3-4.120.
Der volle Inhalt der QuelleDissertationen zum Thema "Shear localizations"
Kim, Kwon Hee. „Shear localization in viscoplastic solids“. Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14662.
Der volle Inhalt der QuelleChantry, Matthew James. „Localization in transitional shear flows“. Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664975.
Der volle Inhalt der QuelleTsang, Ting-Yu 1959. „Shear localization in plane strain metal forming“. Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/291333.
Der volle Inhalt der QuelleKobayashi, H. „Shear localization and fracture in torsion of metals“. Thesis, University of Reading, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374880.
Der volle Inhalt der QuelleAbu-Saman, Awni. „Large plastic deformation and shear localization of crystals“. Doctoral thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/4954.
Der volle Inhalt der QuelleMalvick, Erik Jon. „Void redistribution-induced shear localization and deformation in slopes /“. For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleHeinicke, Christiane. „Lithospheric-Scale Stresses and Shear Localization Induced by Density-Driven Instabilities“. Thesis, Uppsala universitet, Geofysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183725.
Der volle Inhalt der QuelleWang, Xingran. „Numerical simulation of the onset and propagation of shear band localization“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0028/NQ34855.pdf.
Der volle Inhalt der QuelleBourguignon, Matthieu. „Borosilicate glasses : from viscoplasticity to indentation cracking ?“ Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS247.
Der volle Inhalt der QuelleUnderstanding the mechanisms of glass fracture is crucial due to the extensive industrial applications of these materials, where the control of their mechanical properties is key to ensuring performance and durability. In-depth examination of plasticity mechanisms under indentation in aluminoborosilicate glasses has highlighted the critical role of chemical composition in mechanical behavior and crack resistance. It has been observed that the presence and relative concentration of network modifiers, such as alkaline earth oxides, or a higher concentration of boron as a network former, significantly influence localized plastic flow in the form of shear bands, as well as the resistance to crack initiation and propagation. This suggests that precise adjustments in composition can enhance the material's resilience under mechanical stress. Additionally, a series of mechanical and thermal characterizations of these glasses have established correlations between their structure and mechanical behavior under indentation. Furthermore, the study of the effects of electron irradiation on the plasticity of silicate glasses revealed that exposure to electrons can increase these materials' susceptibility to plastic deformation, altering their microscopic structure and mechanical properties. It was found that electron irradiation catalyzes structural rearrangements under stress, leading to a marked decrease in the yield stress of silicate glasses. These changes were analyzed through advanced relaxation and deformation models, allowing for the quantification and prediction of irradiation's impact on glass behavior. This work advances the understanding of plasticity processes in glasses and paves the way for strategies to optimize their mechanical properties, particularly by designing specific compositions to enhance their resistance in demanding industrial environments or under severe conditions
Stevens, John Boyet. „Finite Element Analysis of Adiabatic Shear Bands in Impact and Penetration Problems“. Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/36650.
Der volle Inhalt der QuelleMaster of Science
Bücher zum Thema "Shear localizations"
Bai, Yilong. Adiabatic shear localization: Occurrence, theories, and applications. Oxford: Pergamon Press, 1992.
Den vollen Inhalt der Quelle findenTejchman, Jacek. Finite element modeling of shear localization in granular bodies in hypoplasticity with enhancements. Gdańsk: Gdańsk University of Technology Publishers, 2005.
Den vollen Inhalt der Quelle findenMiguel Torre do Vale Arriaga e Cunha. Stability Analysis of Metals Capturing Brittle and Ductile Fracture through a Phase Field Method and Shear Band Localization. [New York, N.Y.?]: [publisher not identified], 2016.
Den vollen Inhalt der Quelle findenJara, P. Localization and sheaves: A relative point of view. Burnt Mill, Harlow, Essex, England: Longman, 1995.
Den vollen Inhalt der Quelle findenJara, P. Localization and sheaves: A relative point of view. New York: Longman, 1996.
Den vollen Inhalt der Quelle findenBueso, J. L. Compatibility, stability, and sheaves. New York: M. Dekker, 1995.
Den vollen Inhalt der Quelle findenHomburg, Janelle. Field and theoretical investigations of strain localization: Effects of mineralogy, shear heating and grain size evolution on deformation in the Earth. [New York, N.Y.?]: [publisher not identified], 2013.
Den vollen Inhalt der Quelle findenAdiabatic Shear Localization. Elsevier, 2012. http://dx.doi.org/10.1016/c2011-0-06979-x.
Der volle Inhalt der QuelleDodd, Bradley, und Yilong Bai. Introduction to Adiabatic Shear Localization. Imperial College Press, 2014.
Den vollen Inhalt der Quelle findenIntroduction to Adiabatic Shear Localization. World Scientific Publishing Co Pte Ltd, 2014.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Shear localizations"
Wu, Wei, und Dimitrios Kolymbas. „On Oscillatory Shear Stress in Simple Shear“. In Anisotropy and Localization of Plastic Deformation, 365–68. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_85.
Der volle Inhalt der QuelleBoutonnet, Emmanuelle, und Phillipe-Hervé Leloup. „Quartz-strain-rate-metry (QSR), an efficient tool to quantify strain localization in the continental crust“. In Ductile Shear Zones, 63–92. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118844953.ch6.
Der volle Inhalt der QuelleMiyauchi, Kunio. „Rotation Problems in Simple Shear Deformation“. In Anisotropy and Localization of Plastic Deformation, 335–38. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_78.
Der volle Inhalt der QuelleZhang, X. T., und R. C. Batra. „Shear Band Development in a Viscoplastic Cylinder“. In Anisotropy and Localization of Plastic Deformation, 103–6. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_24.
Der volle Inhalt der QuelleNesterenko, Vitali F. „Shear Localization and Shear Bands Patterning in Heterogeneous Materials“. In Dynamics of Heterogeneous Materials, 307–84. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3524-6_4.
Der volle Inhalt der QuelleBardet, J. P., und J. Proubet. „A Shear Band Analysis in Elastoplastic Granular Material“. In Anisotropy and Localization of Plastic Deformation, 35–38. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_8.
Der volle Inhalt der QuelleTzavaras, Athanasios E. „Shear Strain Localization in Plastic Deformations“. In Shock Induced Transitions and Phase Structures in General Media, 231–50. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8348-2_12.
Der volle Inhalt der QuelleDuszek-Perzyna, Maria K., und Piotr Perzyna. „Adiabatic Shear Band Localization in Elastic-Plastic Single Crystals“. In Anisotropy and Localization of Plastic Deformation, 51–55. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_12.
Der volle Inhalt der QuelleWright, T. W. „Susceptibility to Shear Band Formation in Work Hardening Materials“. In Anisotropy and Localization of Plastic Deformation, 95–98. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_22.
Der volle Inhalt der QuelleWang, Xinwei, Akhtar S. Khan und Huigeng Yan. „On Subsequent Yield Surfaces after Finite Shear Pre-Straining“. In Anisotropy and Localization of Plastic Deformation, 361–64. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_84.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Shear localizations"
Chang, L. „On the Shear Bands and Shear Localizations in EHL Films“. In ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64289.
Der volle Inhalt der QuelleChang, L. „A Parametric Analysis of the Thermal Shear Localization in EHL Films“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63955.
Der volle Inhalt der QuelleChen, H. C., M. A. Meyers und V. F. Nesterenko. „Shear localization in granular and comminuted alumina“. In Proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter. AIP, 1996. http://dx.doi.org/10.1063/1.50632.
Der volle Inhalt der QuelleMargraf, Jonathan, und Nathan Barton. „Shear band insertion for capturing strain localization“. In SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000889.
Der volle Inhalt der QuelleAnghel, Veronica, Carl P. Trujillo, Ramon M. Martinez und Jillian P. Bennett. „Microstructure dependent shear localization in 316L SS“. In SHOCK COMPRESSION OF CONDENSED MATTER - 2022: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2023. http://dx.doi.org/10.1063/12.0020443.
Der volle Inhalt der QuelleCampbell, Triona, Reena Cole und Michael O’Donnell. „Pressure Induced Strain at Femoral Artery Bypass Graft Junctions“. In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176342.
Der volle Inhalt der QuelleGuilbault, R. „Influence of thermal shear localization on elastohydrodynamic contacts“. In TRIBOLOGY AND DESIGN 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/td120011.
Der volle Inhalt der QuelleGu, YaBei. „Shear Localization and Patterning of Shear Bands in PTFE and Its Mixtures with Metals“. In SHOCK COMPRESSION OF CONDENSED MATTER - 2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2004. http://dx.doi.org/10.1063/1.1780352.
Der volle Inhalt der QuelleDuan, Xinjian, Don Metzger und Mukesh Jian. „Influence of Yield Criteria on the Prediction of Shear Localization Considering the Inhomogeneous Distribution of Microstructure“. In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2747.
Der volle Inhalt der QuelleIyer, K., S. Schoenfeld, D. Casem und T. Wright. „Validation of a perturbed-continuum model for shear localization“. In Proceedings. Users Group Conference. IEEE, 2004. http://dx.doi.org/10.1109/dod_ugc.2004.54.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Shear localizations"
Lesuer, D., M. LeBlanc, B. Riddle und B. Jorgensen. Modeling of shear localization in materials. Office of Scientific and Technical Information (OSTI), Februar 1998. http://dx.doi.org/10.2172/585518.
Der volle Inhalt der QuelleBecker, R., J. Belak und G. Campbell. Shear Localization and Fracture in Shocked Metals. Office of Scientific and Technical Information (OSTI), Dezember 2002. http://dx.doi.org/10.2172/15004900.
Der volle Inhalt der QuelleLeBrun, Thomas John. Analysis of Compact-Forced Simple Shear and Compact-Forced Double Shear Test Specimens for Shear Localization in Materials. Office of Scientific and Technical Information (OSTI), Mai 2017. http://dx.doi.org/10.2172/1356162.
Der volle Inhalt der QuelleGaraizar, F., D. Trebotich, J. McNaney, M. Kumar, J. Stolken und G. Campbell. Shear Localization and Failure in Shocked Metals Final Report. Office of Scientific and Technical Information (OSTI), Februar 2004. http://dx.doi.org/10.2172/15013902.
Der volle Inhalt der QuelleLi, Mo. Search for the microscopic origin of defects and shear localization in metallic glasses. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/821158.
Der volle Inhalt der QuelleMargraf, J. D. Capturing Rate-Dependent Shear Localization Using a Traction Balance Mixed Zone Closure Model and a Shear Band Insertion Mechanism in ALE3D. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1608525.
Der volle Inhalt der QuelleRudnicki, J. W. Shear strain localization and fracture evolution in rock. Progress report, April 15, 1993--February 15, 1994. Office of Scientific and Technical Information (OSTI), März 1994. http://dx.doi.org/10.2172/10134863.
Der volle Inhalt der QuelleRahmani, Mehran, Xintong Ji und Sovann Reach Kiet. Damage Detection and Damage Localization in Bridges with Low-Density Instrumentations Using the Wave-Method: Application to a Shake-Table Tested Bridge. Mineta Transportation Institute, September 2022. http://dx.doi.org/10.31979/mti.2022.2033.
Der volle Inhalt der QuelleOliynyk, Kateryna, und Matteo Ciantia. Application of a finite deformation multiplicative plasticity model with non-local hardening to the simulation of CPTu tests in a structured soil. University of Dundee, Dezember 2021. http://dx.doi.org/10.20933/100001230.
Der volle Inhalt der QuelleKamrath, Matthew, Vladimir Ostashev, D. Wilson, Michael White, Carl Hart und Anthony Finn. Vertical and slanted sound propagation in the near-ground atmosphere : amplitude and phase fluctuations. Engineer Research and Development Center (U.S.), Mai 2021. http://dx.doi.org/10.21079/11681/40680.
Der volle Inhalt der Quelle