Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sequence-Structure relationship“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sequence-Structure relationship" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sequence-Structure relationship"
Dosztanyi, Z. „Servers for sequence-structure relationship analysis and prediction“. Nucleic Acids Research 31, Nr. 13 (01.07.2003): 3359–63. http://dx.doi.org/10.1093/nar/gkg589.
Der volle Inhalt der QuelleMorris, Kyle L., Alison Rodger, Matthew R. Hicks, Maya Debulpaep, Joost Schymkowitz, Frederic Rousseau und Louise C. Serpell. „Exploring the sequence–structure relationship for amyloid peptides“. Biochemical Journal 450, Nr. 2 (15.02.2013): 275–83. http://dx.doi.org/10.1042/bj20121773.
Der volle Inhalt der QuelleSadowski, M. I., und D. T. Jones. „The sequence–structure relationship and protein function prediction“. Current Opinion in Structural Biology 19, Nr. 3 (Juni 2009): 357–62. http://dx.doi.org/10.1016/j.sbi.2009.03.008.
Der volle Inhalt der QuelleNekrasov, Alexei N., Yuri P. Kozmin, Sergey V. Kozyrev, Rustam H. Ziganshin, Alexandre G. de Brevern und Anastasia A. Anashkina. „Hierarchical Structure of Protein Sequence“. International Journal of Molecular Sciences 22, Nr. 15 (03.08.2021): 8339. http://dx.doi.org/10.3390/ijms22158339.
Der volle Inhalt der QuelleNakamura, Shugo, und Kentaro Shimizu. „2P004 Analysis of sequence-structure relationship of protein loop regions(Proteins-structure and structure-function relationship,Poster Presentations)“. Seibutsu Butsuri 47, supplement (2007): S114. http://dx.doi.org/10.2142/biophys.47.s114_1.
Der volle Inhalt der QuelleKuroda, D., H. Shirai, M. Kobori und H. Nakamura. „Relationship between sequence and structure of CDR-H3 in antibodies“. Acta Crystallographica Section A Foundations of Crystallography 64, a1 (23.08.2008): C228. http://dx.doi.org/10.1107/s0108767308092684.
Der volle Inhalt der QuelleKrissinel, E. „On the relationship between sequence and structure similarities in proteomics“. Bioinformatics 23, Nr. 6 (22.01.2007): 717–23. http://dx.doi.org/10.1093/bioinformatics/btm006.
Der volle Inhalt der QuelleSong, Jianxing. „Environment-transformable sequence–structure relationship: a general mechanism for proteotoxicity“. Biophysical Reviews 10, Nr. 2 (04.12.2017): 503–16. http://dx.doi.org/10.1007/s12551-017-0369-0.
Der volle Inhalt der QuelleMansiaux, Yohann, Agnel Praveen Joseph, Jean-Christophe Gelly und Alexandre G. de Brevern. „Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship“. PLoS ONE 6, Nr. 3 (31.03.2011): e18401. http://dx.doi.org/10.1371/journal.pone.0018401.
Der volle Inhalt der QuelleLeopold, P. E., M. Montal und J. N. Onuchic. „Protein folding funnels: a kinetic approach to the sequence-structure relationship.“ Proceedings of the National Academy of Sciences 89, Nr. 18 (15.09.1992): 8721–25. http://dx.doi.org/10.1073/pnas.89.18.8721.
Der volle Inhalt der QuelleDissertationen zum Thema "Sequence-Structure relationship"
Wang, Pam Shou-Ping. „Exploring the sequence-structure-function relationship in beta-peptide foldamers“. Thesis, Yale University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3580893.
Der volle Inhalt der QuelleThe interplay between sequence, structure and function is an underlying theme in biological systems. Proteins, in particular, have evolved the ability to access a virtually infinite set of three-dimensional architectures from a small collection of building blocks; it is precisely this complexity of form that finely tunes their functional specificity. β-Peptides are a class of unnatural polyamides known to adopt structural motifs that are in many ways reminiscent of protein folds in nature. This dissertation first investigates the relationship between sequence and structure in self-assembling β-peptides, then demonstrates how the latter translates into function.
Chapter 1 provides an overview of the fundamental principles guiding β-peptide helix formation and self-assembly, and describes their applications both within and outside of the biological context. The ability of β-peptides to mimic natural α-helices while maintaining proteolytic resistance allows them to serve as therapeutic agents by targeting, for example, protein-protein interactions. Their unique stability in both aqueous and organic environments further enables the development of β-peptide-based nanomaterials and organocatalysts.
Chapter 2 elucidates the relationship between β-peptide primary sequence and quaternary structure based on the biophysical characterization of the Acid-3Y bundle. Acid-3Y was designed by substituting isoleucine for leucine side-chains in the sequence of the previously characterized octamer, Acid-1Y. The finding that Acid-3Y assembles into a tetrameric bundle suggests that branching at the γ-carbon of hydrophobic residues plays a critical role in determining β-peptide bundle stoichiometry.
Chapter 3 explores the potential of β-peptide bundles to mimic enzyme structure and function. The demonstration of β-peptide mutarotase activity in benzene highlights the importance of macromolecular preorganization in catalysis, while the ability of rationally designed β-peptide bundles to catalyze ester hydrolysis in water represents a crucial step towards the functionalization of these unnatural macromolecules. The dependence of catalytic activity on both active site geometry and bundle assembly, together with their substrate selectivity, underscores the unique biomimetic capacity of β-peptides.
Chapter 4 describes the rational design of a β-peptide ligand for the parathyroid hormone 1 receptor (PTH1R). Using previous strategies that led to the identification of p53 and GLP-1 mimics, a 12-member β-peptide library was constructed and tested in vitro for binding to the receptor protein. Although no hits were found from this initial screen, subsequently designed α/β-peptide chimeras showed promise as synthetic antagonists of PTH1R with improved pharmacokinetic properties.
Chapter 5 summarizes the key results of this dissertation and offers a perspective on possible future research directions. A breakthrough in the field of β-peptides would rely on the development of a method to synthesize genuine "β-proteins" with more sophisticated structure and function.
Mokrab, Younes. „Insights into sequence-structure relationship in helical transmembrane proteins : application to comparative modeling“. Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611915.
Der volle Inhalt der QuelleViklund, Håkan. „Formalizing life : Towards an improved understanding of the sequence-structure relationship in alpha-helical transmembrane proteins“. Doctoral thesis, Stockholm University, Department of Biochemistry and Biophysics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7144.
Der volle Inhalt der QuelleGenes coding for alpha-helical transmembrane proteins constitute roughly 25% of the total number of genes in a typical organism. As these proteins are vital parts of many biological processes, an improved understanding of them is important for achieving a better understanding of the mechanisms that constitute life.
All proteins consist of an amino acid sequence that fold into a three-dimensional structure in order to perform its biological function. The work presented in this thesis is directed towards improving the understanding of the relationship between sequence and structure for alpha-helical transmembrane proteins. Specifically, five original methods for predicting the topology of alpha-helical transmembrane proteins have been developed: PRO-TMHMM, PRODIV-TMHMM, OCTOPUS, Toppred III and SCAMPI.
A general conclusion from these studies is that approaches that use multiple sequence information achive the best prediction accuracy. Further, the properties of reentrant regions have been studied, both with respect to sequence and structure. One result of this study is an improved definition of the topological grammar of transmembrane proteins, which is used in OCTOPUS and shown to further improve topology prediction. Finally, Z-coordinates, an alternative system for representation of topological information for transmembrane proteins that is based on distance to the membrane center has been introduced, and a method for predicting Z-coordinates from amino acid sequence, Z-PRED, has been developed.
Viklund, Håkan. „Formalizing life : towards an improved understanding of the sequence-structure relationship in alpha-helical transmembrane proteins /“. Stockholm : Department of Biochemistry and Biophysics, Stockholm University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7144.
Der volle Inhalt der QuelleZheng, Ying. „Functional divergence after gene duplication and sequence-structure relationship a case-study of G-protein alpha subunits /“. [Ames, Iowa : Iowa State University], 2007.
Den vollen Inhalt der Quelle findenShafqat, Naeem. „Substrate specificities and functional properties of human short-chain dehydrogenases/reductases /“. Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-829-7.
Der volle Inhalt der QuelleChevallier, Sylvie. „Relations structure-fonction de l'oligopeptidase proline-spécifique (EC 3. 4. 21. 26) de Flavobacterium meningosepticum“. Grenoble 1, 1993. http://www.theses.fr/1993GRE10076.
Der volle Inhalt der QuelleVignoud, Lucile. „Étude du rôle des motifs NPXY dans la fonction de l'intégrine alpha 5/beta 1“. Grenoble 1, 1996. http://www.theses.fr/1996GRE10274.
Der volle Inhalt der QuelleLombard, Valentin. „Geometric deep manifold learning combined with natural language processing for protein movies“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS379.
Der volle Inhalt der QuelleProteins play a central role in biological processes, and understanding how they deform and move is essential to elucidating their functional mechanisms. Despite recent advances in high-throughput technologies, which have broadened our knowledge of protein structures, accurate prediction of their various conformational states and motions remains a major challenge. We present two complementary approaches to address the challenge of understanding and predicting the full range of protein conformational variability. The first approach, Dimensionality Analysis for protein Conformational Exploration (DANCE) for a systematic and comprehensive description of protein families conformational variability. DANCE accommodates both experimental and predicted structures. It is suitable for analyzing anything from single proteins to superfamilies. Employing it, we clustered all experimentally resolved protein structures available in the Protein Data Bank into conformational collections and characterized them as sets of linear motions. The resource facilitates access and exploitation of the multiple states adopted by a protein and its homologs. Beyond descriptive analysis, we assessed classical dimensionality reduction techniques for sampling unseen states on a representative benchmark. This work improves our understanding of how proteins deform to perform their functions and opens ways to a standardized evaluation of methods designed to sample and generate protein conformations. The second approach relies on deep learning to predict continuous representations of protein motion directly from sequences, without the need for structural data. This model, SeaMoon, uses protein language model (pLM) embeddings as inputs to a lightweight convolutional neural network with around 1 million trainable parameters. SeaMoon achieves a success rate of 40% when evaluated against around 1,000 collections of experimental conformations, capturing movements beyond the reach of traditional methods such as normal mode analysis, which relies solely on 3D geometry. In addition, SeaMoon generalizes to proteins that have no detectable sequence similarity with its training set and can be easily retrained with updated pLMs. These two approaches offer a unified framework for advancing our understanding of protein dynamics. DANCE provides a detailed exploration of protein movements based on structural data, while SeaMoon demonstrates the potential of sequence-based deep learning models to capture complex movements without relying on explicit structural information. Together, they pave the way for a more comprehensive understanding of protein conformational variability and its role in biological function
Pauly, Marc. „Etude structurale et fonctionnelle de la sequence tata du promoteur precoce du virus simien sv40“. Université Louis Pasteur (Strasbourg) (1971-2008), 1989. http://www.theses.fr/1989STR13043.
Der volle Inhalt der QuelleBücher zum Thema "Sequence-Structure relationship"
International Symposium on Protein Structure-Function Relationship (1988 Karachi, Pakistan). Protein structure-function relationship: Proceedings of the International Symposium on Protein Structure-Function Relationship, held in Karachi, Pakistan, 18-20 January 1988, and of the Protein Sequencing Workshop, held subsequently in Karachi, Pakistan, 21-30 January 1988. Herausgegeben von Zaidi Zafar H und Protein Sequencing Workshop (1988 : Karachi, Pakistan). Amsterdam: Elsevier Science Publishers, 1988.
Den vollen Inhalt der Quelle findenW, Shriver John, Hrsg. Protein structure, stability, and interactions. New York, N.Y: Humana, 2009.
Den vollen Inhalt der Quelle findenHarren, Jhoti, und Leach Andrew R, Hrsg. Structure-based drug discovery. Dordrecht: Springer, 2007.
Den vollen Inhalt der Quelle findenI, Chasman Daniel, Hrsg. Protein structure: Determination, analysis, and applications for drug discovery. New York: Marcel Dekker, 2003.
Den vollen Inhalt der Quelle findenNir, Ben-Tal, Hrsg. Introduction to proteins: Structure, function, and motion. Boca Raton, FL: CRC Press, 2011.
Den vollen Inhalt der Quelle findenProtein Structure Determination. Wiley-Interscience, 1991.
Den vollen Inhalt der Quelle findenR, Leach· Andrew, und Harren Jhoti. Structure-based Drug Discovery. Springer, 2010.
Den vollen Inhalt der Quelle finden(Editor), Harren Jhoti, und Andrew R. Leach (Editor), Hrsg. Structure-based Drug Discovery. Springer, 2007.
Den vollen Inhalt der Quelle findenChasman, Daniel. Protein Structure: Determination, Analysis, and Applications for Drug Discovery. Taylor & Francis Group, 2003.
Den vollen Inhalt der Quelle findenChasman, Daniel. Protein Structure: Determination, Analysis, and Applications for Drug Discovery. Taylor & Francis Group, 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Sequence-Structure relationship"
Lesk, Arthur M. „Proteins: Relationship Among Divergence of Sequence, Structure, and Function“. In Encyclopedia of Biophysics, 2101–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_145.
Der volle Inhalt der QuelleHolder, Jerry Ryan, Rayna M. Bauzo, Zhimin Xiang und Carrie Haskell-Luevano. „Structure-Activity Relationship Studies (SAR) of Melanocortin Agonists Central His-Phe-Arg-Trp Sequence“. In Peptides: The Wave of the Future, 706–7. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_329.
Der volle Inhalt der QuelleJi, Rongju, und Haoqi Ren. „A New Prefetching Unit for Digital Signal Processor“. In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 928–35. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_94.
Der volle Inhalt der QuelleUpadhyay, Upashna, Poonam Kaithal, Preetam Verma, Rohit Lall und Poonam Singh. „Analysis of Pectin in Different Citrus Fruits and Evolutionary Relationship“. In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 268–75. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_26.
Der volle Inhalt der QuelleSong, Zhiyu, Yafei Zhai und Guangkun Liu. „Analysis of Dynamic Response Characteristics of Towering Intake Towers Under the Action of Main-Aftershock Sequences“. In Lecture Notes in Civil Engineering, 247–57. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-9184-2_22.
Der volle Inhalt der QuelleStoeva, Stanka, Krasimira Idakieva, Wolfgang Voelter und Nicolay Genov. „Isolation, Characterization and Amino Acid Sequence of the N-Terminal Functional Unit from the Rapana thomasiana grosse (Marine Snail, Gastropod) Hemocyanin“. In Protein Structure — Function Relationship, 237–48. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0359-6_24.
Der volle Inhalt der QuelleHunter, C. A., und M. J. Packer. „Computational Approaches to Predicting Sequence-Structure Relationships in DNA“. In Solid Mechanics and Its Applications, 447–56. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9930-6_34.
Der volle Inhalt der QuelleSteipe, Boris, und Bhooma Thiruv. „schematikon: Detailed Sequence-Structure Relationships from Mining a Non-redundant Protein Structure Database“. In Bioinformatics Research and Applications, 357–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08171-7_32.
Der volle Inhalt der QuelleHoward, S. P., und L. Lindsay. „Structure/Function Relationships in the Signal Sequence of the Colicin A Lysis Protein“. In Bacteriocins, Microcins and Lantibiotics, 317–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76974-0_28.
Der volle Inhalt der QuelleEstess, Pila, Ann B. Begovich, Patricia P. Jones und Hugh O. McDevitt. „Structure/Function Relationships Among Murine Class II Molecules: Sequence Analysis of I-A cDNA Clones“. In Regulation of Immune Gene Expression, 3–19. Totowa, NJ: Humana Press, 1986. http://dx.doi.org/10.1007/978-1-4612-5014-2_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Sequence-Structure relationship"
Li, Minghui, Lei Lin, Xiaolong Wang, Qiwen Dong und Tao Liu. „Study on Relationship between Protein Sequence Pattern and Protein Secondary Structure“. In 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1615533.
Der volle Inhalt der QuelleNicosia, Giuseppe, Eva Sciacca und Luca Zammataro. „Detecting constituent sequences by means of HP pattern-based grammars to synthesize proteins: Inferring sequence-structure-function relationship“. In 2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops. IEEE, 2007. http://dx.doi.org/10.1109/bibmw.2007.4425400.
Der volle Inhalt der QuelleJenewein, Oswald. „Designing Towards Ecological Environments: A Modular Approach to Structure a Design Studio Sequence“. In 2019 ACSA Teachers Conference. ACSA Press, 2019. http://dx.doi.org/10.35483/acsa.teach.2019.53.
Der volle Inhalt der QuelleGrzebieta, Raphael, David Young, Andrew McIntosh und Michael Bambach. „Occupant Injuries and Roof Strength in Rollover Crashes“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68739.
Der volle Inhalt der QuelleRamaswamy, Shri, Shuiyuan Huang, Amit Goel, Aron Cooper, Doeung Choi, A. Bandyopadhyay und B. V. Ramarao. „The 3D Structure of Paper and its Relationship to Moisture Transport in Liquid and Vapor Forms“. In The Science of Papermaking, herausgegeben von C. F. Baker. Fundamental Research Committee (FRC), Manchester, 2001. http://dx.doi.org/10.15376/frc.2001.2.1289.
Der volle Inhalt der QuelleSonalkar, Neeraj, Kathryn Jablokow, Jonathan Edelman, Ade Mabogunje und Larry Leifer. „Design Whodunit: The Relationship Between Individual Characteristics and Interaction Behaviors in Design Concept Generation“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68239.
Der volle Inhalt der QuelleMiwa, Toshiharu, Hideki Aoyama und Kosuke Ishii. „Probabilistic Evaluation of Product Development Task Planning Using Worth Flow Analysis“. In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49142.
Der volle Inhalt der QuelleWang, Tianming, Xiaojun Wan und Shaowei Yao. „Better AMR-To-Text Generation with Graph Structure Reconstruction“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/542.
Der volle Inhalt der QuelleGanian, Robert, Viktoriia Korchemna und Stefan Szeider. „Revisiting Causal Discovery from a Complexity-Theoretic Perspective“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/374.
Der volle Inhalt der QuelleQiao, Jie, Ruichu Cai, Siyu Wu, Yu Xiang, Keli Zhang und Zhifeng Hao. „Structural Hawkes Processes for Learning Causal Structure from Discrete-Time Event Sequences“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/633.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Sequence-Structure relationship"
Montville, Thomas J., und Roni Shapira. Molecular Engineering of Pediocin A to Establish Structure/Function Relationships for Mechanistic Control of Foodborne Pathogens. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568088.bard.
Der volle Inhalt der QuelleMevarech, Moshe, Jeremy Bruenn und Yigal Koltin. Virus Encoded Toxin of the Corn Smut Ustilago Maydis - Isolation of Receptors and Mapping Functional Domains. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7613022.bard.
Der volle Inhalt der QuelleMcElwain, Terry, Eugene Pipano, Guy Palmer, Varda Shkap, Stephen Hines und Douglas Jasmer. Protection of Cattle Against Babesiosis: Immunization with Recombinant DNA Derived Apical Complex Antigens of Babesia bovis. United States Department of Agriculture, Juni 1995. http://dx.doi.org/10.32747/1995.7612835.bard.
Der volle Inhalt der QuelleFunkenstein, Bruria, und Cunming Duan. GH-IGF Axis in Sparus aurata: Possible Applications to Genetic Selection. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7580665.bard.
Der volle Inhalt der QuelleHunter, Fraser, und Martin Carruthers. Iron Age Scotland. Society for Antiquaries of Scotland, September 2012. http://dx.doi.org/10.9750/scarf.09.2012.193.
Der volle Inhalt der Quelle