Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sensing element“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sensing element" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sensing element"
Marle, Olivier, und Jae-Bong Koo. „Programmable Hall Effect Sensing Element“. International Journal of Automotive Engineering 7, Nr. 4 (2016): 153–59. http://dx.doi.org/10.20485/jsaeijae.7.4_153.
Der volle Inhalt der QuelleCataldo, Andrea, Raissa Schiavoni, Antonio Masciullo, Giuseppe Cannazza, Francesco Micelli und Egidio De Benedetto. „Combined Punctual and Diffused Monitoring of Concrete Structures Based on Dielectric Measurements“. Sensors 21, Nr. 14 (16.07.2021): 4872. http://dx.doi.org/10.3390/s21144872.
Der volle Inhalt der QuelleOdoi, Wataru, und Hidetoshi Takahashi. „Pitot tube using flexible sensing element“. Proceedings of the Symposium on Micro-Nano Science and Technology 2019.10 (2019): 20pm3PN218. http://dx.doi.org/10.1299/jsmemnm.2019.10.20pm3pn218.
Der volle Inhalt der QuelleYang, Xing, Zhao-ying Zhou, Ying Wu, Jin Zhang und Ying-ying Zhang. „A carbon nanotube-based sensing element“. Optoelectronics Letters 3, Nr. 2 (März 2007): 81–84. http://dx.doi.org/10.1007/s11801-007-7023-1.
Der volle Inhalt der QuelleIgnatov, Anton I., und Alexander M. Merzlikin. „Two optical sensing elements for H2O and NO2 gas sensing based on the single plasmonic – photonic crystal slab“. Advanced Optical Technologies 9, Nr. 4 (25.09.2020): 203–8. http://dx.doi.org/10.1515/aot-2019-0059.
Der volle Inhalt der QuelleMishra, Surabhi, Pooja Lohia, Priyanka Chaudhary, B. C. Yadav, D. K. Dwivedi, Hassan Fouad und M. S. Akhtar. „High-Performance Humidity Sensing of Arsenic Based Chalcogenide Thin Films at Different Frequencies“. Science of Advanced Materials 13, Nr. 10 (01.10.2021): 2033–42. http://dx.doi.org/10.1166/sam.2021.4153.
Der volle Inhalt der QuelleKuswanto, Heru, Ichwan Abimanyu und Wipsar Sunu Brams Dwandaru. „Increasing the Sensitivity of Polymer Optical Fiber Sensing Element in Detecting Humidity: Combination of Macro and Micro Bendings“. Trends in Sciences 19, Nr. 7 (12.03.2022): 3200. http://dx.doi.org/10.48048/tis.2022.3200.
Der volle Inhalt der QuelleAbdollahzadeh, Mohammad Amin, Adnan Kefal und Mehmet Yildiz. „A Comparative and Review Study on Shape and Stress Sensing of Flat/Curved Shell Geometries Using C0-Continuous Family of iFEM Elements“. Sensors 20, Nr. 14 (08.07.2020): 3808. http://dx.doi.org/10.3390/s20143808.
Der volle Inhalt der QuelleSavino, Pierclaudio, Francesco Tondolo, Marco Gherlone und Alexander Tessler. „Application of Inverse Finite Element Method to Shape Sensing of Curved Beams“. Sensors 20, Nr. 24 (08.12.2020): 7012. http://dx.doi.org/10.3390/s20247012.
Der volle Inhalt der QuelleChakarborty, Sekhar, Sudip Suklabaidya, D. Bhattacharjee und Syed Arshad Hussain. „Polydiacetylene (PDA) Film: A unique sensing element“. Materials Today: Proceedings 5, Nr. 1 (2018): 2367–72. http://dx.doi.org/10.1016/j.matpr.2017.09.243.
Der volle Inhalt der QuelleDissertationen zum Thema "Sensing element"
Miller, Dawn Elizabeth. „Underground cable fault location using multi-element gas sensing“. Thesis, University of Manchester, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681492.
Der volle Inhalt der QuelleCurtis, Andrew W. 1970. „A nonlinearly compliant transmission element for force sensing and control“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/89260.
Der volle Inhalt der QuelleSt, Quintin Andra. „Electron beam lithography of a diffractive element for surface plasmon resonance sensing“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114573.
Der volle Inhalt der QuelleLa résonance plasmonique de surface (SPR) est considérée comme une option convenable pour le développement de capteurs biologiques offrant un système de détection portatif, en temps réel et intégré. Certains instruments utilisant cette technique de détection ont déjà été commercialisés; cependant, la tendance se maintient pour le développement de systèmes qui sont encore plus compacts et intégrés. Dans cette même direction, un dispositif SPR à multiples canaux basé sur des lentilles diffractives pour focaliser la lumière vers et depuis les régions de détection a été conçu précédemment. Cette thèse présente la conception d'un procédé de fabrication pour ces lentilles utilisant la lithographie par faisceau d'électrons ainsi que les résultats optiques obtenus avec un prototype. Il est démontré que le procédé de fabrication permet un grand contrôle de l'alignement du motif et de la taille des détails. La méthode conçue est ensuite utilisée pour créer une lentille diffractive et réflective sur un substrat de silicium. L'efficacité de diffraction de la lentille est de 18% environ et la taille du faisceau au foyer est en accord avec les prédictions basées sur le profile de fabrication.
Xu, Zhi-Hui. „Mechanical Characterisation of Coatings and Composites-Depth-Sensing Indentation and Finite Element Modelling“. Doctoral thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3770.
Der volle Inhalt der QuelleIn the past two decades depth-sensing indentation has becomea widely used technique to measure the mechanical properties ofmaterials. This technique is particularly suitable for thecharacterisation of materials at sub-micro or nano scale thoughthere is a tendency to extend its application to the micro ormacro scale. The load-penetration depth curve of depth-sensingindentation is a characteristic of a material and can be usedfor analysing various mechanical properties in addition tohardness. This thesis deals with the mechanicalcharacterisation of bulk materials, thin films and coatings,gradient materials, and composites using depth-sensingindentation. Finite element method has been resorted to as atool to understand the indentation behaviour of materials.
The piling-up or sinking-in behaviour of materials plays animportant role in the accurate determination of materialsproperties using depth-sensing indentation. Finite elementsimulations show that the piling-up or sinking-in behaviour isdetermined by the material parameters, namelyE/σyratio and strain hardening exponent orexperimental parameterhe/hmaxratio, and the contact friction. Anempirical model has been proposed to relate the contact area ofindentation to theE/σyratio and thehe/hmaxratio and used to predict thepiling-up orsinking-in of materials. The existence of friction is found toenhance the sinking-in tendency of materials. A generalrelationship between the hardness and the indentationrepresentative stress valid for both soft and hard materialshas been obtained. A possible method to estimate the plasticproperties of bulk materials has been suggested.
Measuring the coating-only properties requires theindentation to be done within a critical penetration depthbeyond which substrate effect comes in. The ratio of thecritical penetration depth to the coating thickness determinedby nanoindentation is independent of coating thickness andabout 0.2 for gold / nickel, 0.4 for aluminium / BK7 glass, and0.2 for diamond-like-carbon / M2 steel and alumina / nickel.Finite element simulations show that this ratio is dependent onthe combination of the coating and the substrate and moresensitive to differences in the elastic properties than in theplastic properties of the coating/substrate system. Thedeformation behaviour of coatings, such as, piling-up of thesoft coatings and cracking of the hard coatings, has also beeninvestigated using atomic force microscope.
The constraint factors, 2.24 for WC phase and 2.7 for WC-Cocemented carbides, are determined through nanoindentation andfinite element simulations. A modified hardness model of WC-Cocemented carbides has been proposed, which gives a betterestimation than the Lee and Gurland hardness model. Finiteelement method has also been used to investigate theindentation behaviour of WC-Co gradient coatings.
Keywords:depth-sensing indentation, nanoindentation,finite element method, atomic force microscope, mechanicalproperties, hardness, deformation, dislocations, cracks,piling-up, sinking-in, indentation size effect, thin coatings,composite, gradient materials, WC-Co, diamond-like-carbon,alumina, gold, aluminium, nickel, BK7 glass, M2 steel.
Tu, Minh Hieu. „Investigation of metal nanomaterials as a sensing element in LSPR-based optical fibre sensor development“. Thesis, City University London, 2014. http://openaccess.city.ac.uk/5919/.
Der volle Inhalt der QuelleНагорний, Сергій Сергійович, Сергей Сергеевич Нагорный und Serhii Serhiiovych Nahornyi. „Formation of the sensing element of the magnetic field sensor based on Cu and Cu“. Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46858.
Der volle Inhalt der QuelleLundman, Sara, und Patrick Parnéus. „Virtual Sensing for Fatigue Assessment of the Rautasjokk Bridge“. Thesis, KTH, Bro- och stålbyggnad, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231441.
Der volle Inhalt der QuelleAnyintuo, Thomas Becket. „Seepage-Coupled Finite Element Analysis of Stress Driven Rock Slope Failures for BothNatural and Induced Failures“. Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7731.
Der volle Inhalt der QuelleCraig, Mark. „Advanced condition monitoring to predict rolling element bearing wear using multiple in-line and off-line sensing“. Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/185079/.
Der volle Inhalt der QuelleBane, Danielle Nichole. „A Resonant Capacitive Test Structure for Biomolecule Sensing“. University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1437658452.
Der volle Inhalt der QuelleBücher zum Thema "Sensing element"
Arafeh, L. M. M. Investigations of multi-element gas sensing systems. Manchester: UMIST, 1992.
Den vollen Inhalt der Quelle findenOrganisation Internationale de Métrologie Légale. Pressure gauges and vacuum gauges with elastic sensing elements (standard instruments). Paris: OIML, 1993.
Den vollen Inhalt der Quelle findenHashim, Zulkifli Mohamed. Sn and Pb containing metal oxides as potential gas sensing elements. Manchester: UMIST, 1997.
Den vollen Inhalt der Quelle findenA, Dewitt Bon, Hrsg. Elements of photogrammetry: With applications in GIS. 3. Aufl. Boston: McGraw-Hill, 2000.
Den vollen Inhalt der Quelle findenOrganisation Internationale de Métrologie Légale. Indicating and recording pressure gauges, vacuum gauges and pressure - vacuum gauges with elastic sensing elements (ordinary instruments). Paris: OIML, 1991.
Den vollen Inhalt der Quelle findenEnsuring the climate record from the NPOESS and GOES-R spacecraft: Elements of a strategy to recover measurement capabilities lost in program restructuring. Washington, D.C: National Academies Press, 2008.
Den vollen Inhalt der Quelle findenZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Den vollen Inhalt der Quelle findenWind, wave, stress, and surface roughness relationships from turbulence measurements made on R/P Flip in the SCOPE experiment: A report for the DoD ASAP program, environmemntal sensing program element (P.ETL.2909). Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Den vollen Inhalt der Quelle findenZinn, S., und S. L. Semiatin. Elements of Induction Heating. ASM International, 1988. http://dx.doi.org/10.31399/asm.tb.eihdca.9781627083416.
Der volle Inhalt der QuelleM, Pieters Carlé, und Englert Peter A. J, Hrsg. Remote geochemical analysis: Elemental and mineralogical composition. Cambridge, England: Press Syndicate of University of Cambridge, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Sensing element"
Atia, Khaled S. R., Souvik Ghosh, Ahmed M. Heikal, Mohamed Farhat O. Hameed, B. M. A. Rahman und S. S. A. Obayya. „Finite Element Method for Sensing Applications“. In Computational Photonic Sensors, 109–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_6.
Der volle Inhalt der QuelleLebedev, Victor, Elena Laukhina, Vladimir Laukhin, Andrey Somov, Alexander Baranov, Concepcio Rovira und Jaume Veciana. „Approach to Engineering the Temperature Sensing E-textile: A Lightweight Thermistor as an Active Sensing Element“. In Internet of Things. IoT Infrastructures, 223–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47075-7_27.
Der volle Inhalt der QuelleKübler, Inna, und Daniel Pepper. „Optical Partial Discharge Measurement with Integrated Optical Fibers as Sensing Element“. In Lecture Notes in Electrical Engineering, 937–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_88.
Der volle Inhalt der QuelleDey, Anup, Bijoy Kantha und Subir Kumar Sarkar. „Study the effects of annealing temperatures on sol-gel derived TiO2 sensing element“. In Computational Science and Engineering, 247–50. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: CRC Press, 2016. http://dx.doi.org/10.1201/9781315375021-49.
Der volle Inhalt der QuelleDutta, Aradhana, und Partha Pratim Sahu. „Optical Waveguide Sensor as Detection Element for Lab on a Chip Sensing Application“. In Planar Waveguide Optical Sensors, 151–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35140-7_6.
Der volle Inhalt der QuelleOboe, Daniele, Luca Colombo, Claudio Sbarufatti und Marco Giglio. „Shape Sensing with Inverse Finite Element Method on a Composite Plate Under Compression Buckling“. In Lecture Notes in Civil Engineering, 342–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64908-1_32.
Der volle Inhalt der QuelleAdhikary, Tathagata, Amalesh Nanda, K. Thangapandi, Shantonu Roy und Saikat Kumar Jana. „Trends in Biosensors and Role of Enzymes as Their Sensing Element for Healthcare Applications“. In Microbial Fermentation and Enzyme Technology, 147–64. Boca Raton : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429061257-10.
Der volle Inhalt der QuelleYakovenko, Anastasya, Irina Goryacheva und Marat Dosaev. „Estimating Characteristics of a Contact Between Sensing Element of Medical Robot and Soft Tissue“. In New Trends in Mechanism and Machine Science, 561–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44156-6_57.
Der volle Inhalt der QuelleOboe, Daniele, Luca Colombo, Claudio Sbarufatti und Marco Giglio. „Shape Sensing with Inverse Finite Element Method on a Composite Plate Under Compression Buckling“. In Lecture Notes in Civil Engineering, 342–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64908-1_32.
Der volle Inhalt der QuelleYin, Kun. „Pyoverdine as a Biorecognition Element to Develop Biosensor for the Detection of Furazolidone“. In Design of Novel Biosensors for Optical Sensing and Their Applications in Environmental Analysis, 25–35. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6488-4_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Sensing element"
Castellanos-Ramos, Julián, Rafael Navas-González und F. Vidal-Verdú. „Tri-axial tactile sensing element“. In SPIE Microtechnologies, herausgegeben von Angeliki Tserepi, Manuel Delgado-Restituto und Eleni Makarona. SPIE, 2013. http://dx.doi.org/10.1117/12.2016981.
Der volle Inhalt der QuelleQian, Dingrong. „Element of a new infrared detector-plasma edge detector“. In Aerospace Sensing, herausgegeben von Eustace L. Dereniak und Robert E. Sampson. SPIE, 1992. http://dx.doi.org/10.1117/12.137802.
Der volle Inhalt der QuelleHeinickel, Patrik, und Roland Werthschuetzky. „B3.1 - Novel Silicon High Pressure Sensing Element“. In SENSOR+TEST Conferences 2009. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2009. http://dx.doi.org/10.5162/sensor09/v1/b3.1.
Der volle Inhalt der QuelleFornaro, Gianfranco, Giorgio Franceschetti, Riccardo Lanari, Damiano Rossi und Manlio Tesauro. „Finite-element method for interferometric SAR phase unwrapping“. In Satellite Remote Sensing III, herausgegeben von Giorgio Franceschetti, Christopher J. Oliver, Franco S. Rubertone und Shahram Tajbakhsh. SPIE, 1996. http://dx.doi.org/10.1117/12.262698.
Der volle Inhalt der QuelleKress, Bernard, Victorien Raulot, Pierre St. Hilaire und Patrick Meyrueis. „Low-cost replicable plastic HUD combiner element“. In SPIE Defense, Security, and Sensing, herausgegeben von Alex A. Kazemi und Bernard C. Kress. SPIE, 2009. http://dx.doi.org/10.1117/12.821372.
Der volle Inhalt der QuelleNorkus, Volkmar, Guenter Hofmann, Silke Moehling und Helmut Budzier. „Pyroelectric IR single-element detectors and arrays based on LiNbO3 and LiTaO3“. In Aerospace Sensing, herausgegeben von Eustace L. Dereniak und Robert E. Sampson. SPIE, 1992. http://dx.doi.org/10.1117/12.137791.
Der volle Inhalt der QuelleSiegel, Alan. „Element quality analysis: estimating the accuracy of ephemeris predictions from orbital elements“. In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, herausgegeben von Oliver E. Drummond. SPIE, 1994. http://dx.doi.org/10.1117/12.179103.
Der volle Inhalt der QuelleKuznetsov, V. A., A. S. Berdinsky, A. Yu Ledneva, S. B. Artemkina, M. S. Tarasenko und V. E. Fedorov. „Strain-sensing element based on layered sulfide Mo0.95Re0.05S2“. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2015. http://dx.doi.org/10.1109/mipro.2015.7160230.
Der volle Inhalt der QuelleBencivenni, C., M. V. Ivashina und R. Maaskant. „Multi-element aperiodic array synthesis by Compressive Sensing“. In 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2015. http://dx.doi.org/10.1109/iceaa.2015.7297108.
Der volle Inhalt der QuelleChoubey, Bhaskar. „Identifying sensing element in a resonant sensor array“. In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8233918.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Sensing element"
Arenz, R. W. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6762055.
Der volle Inhalt der QuelleArenz, R. W. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), Dezember 1990. http://dx.doi.org/10.2172/6294220.
Der volle Inhalt der QuelleArenz, R. W. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), Oktober 1991. http://dx.doi.org/10.2172/5068581.
Der volle Inhalt der QuelleArenz, R. A miniature inexpensive, oxygen sensing element. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6959355.
Der volle Inhalt der QuelleKelley-Loughnane, Nancy, Joshua A. Hagen, Jorge L. Chavez, Nathan S. Swami und Chia-Fu Chou. Biorecognition Element Design and Characterization for Human Performance Biomarkers Sensing. Fort Belvoir, VA: Defense Technical Information Center, Juli 2015. http://dx.doi.org/10.21236/ada626954.
Der volle Inhalt der QuelleRoot, Harrison Duane. Applications of Porphyrinoid Macrocycles in Molecular Sensing and f-Element Coordination. Office of Scientific and Technical Information (OSTI), Juni 2020. http://dx.doi.org/10.2172/1635507.
Der volle Inhalt der QuelleYan, Yujie, und Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, Mai 2021. http://dx.doi.org/10.17760/d20410114.
Der volle Inhalt der QuelleBlalock, T., und M. Reed. Uncooled Infrared Detector Arrays With Electrostatically Levitated Sensing Elements. Fort Belvoir, VA: Defense Technical Information Center, März 2005. http://dx.doi.org/10.21236/ada431988.
Der volle Inhalt der Quelle