Dissertationen zum Thema „Sensation and thermal comfort“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Sensation and thermal comfort" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Kelly, Lisa K. „Thermal comfort on train journeys“. Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8445.
Der volle Inhalt der QuelleStreblow, Rita [Verfasser]. „Thermal sensation and comfort model for inhomogeneous indoor environments / Rita Streblow“. Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018222863/34.
Der volle Inhalt der QuelleŽarko, Bojić. „Uticaj parametara mikroklime, buke i osvetljenja na toplotni komfor u radnoj sredini“. Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2018. https://www.cris.uns.ac.rs/record.jsf?recordId=107508&source=NDLTD&language=en.
Der volle Inhalt der QuelleThis paper examines the influence of the parameters of microclimate, noiseand lighting on the thermal sensation and thermal comfort in the workingenvironment. There is a constant interaction between a person and hisenvironment, which can cause physiological disorders in the organism. In theframework of this paper, the theoretical bases of the parameters ofmicroclimate, noise and lighting, as well as their theoretical influence on thegeneration and exchange of heat energy between person and environmentare presented. The paper encompasses research on the interdependence ofthe parameters studied for thermal sensation and the thermal comfort of aperson at the workplace in a standing position.
Westerlund, T. (Tarja). „Thermal, circulatory, and neuromuscular responses to whole-body cryotherapy“. Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514290435.
Der volle Inhalt der QuelleMontanheiro, Fabiana Padilha [UNESP]. „Percepção térmica de idosos“. Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/138157.
Der volle Inhalt der QuelleApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-29T17:53:23Z (GMT) No. of bitstreams: 1 montanheiro_fp_me_bauru.pdf: 1833961 bytes, checksum: d83a3427b3bd4997f83da6c40a0ec6b5 (MD5)
Made available in DSpace on 2016-04-29T17:53:23Z (GMT). No. of bitstreams: 1 montanheiro_fp_me_bauru.pdf: 1833961 bytes, checksum: d83a3427b3bd4997f83da6c40a0ec6b5 (MD5) Previous issue date: 2016-03-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
No panorama mundial o número de pessoas com 60 anos ou mais vem aumentando rapidamente. A grande maioria dos idosos que vive de forma independente deseja continuar seu estilo de vida atual, e para isso precisa de apoio extra e orientação para envelhecer com bem-estar e saúde. Essas condições incluem a convivência em ambientes agradáveis, inclusive em relação ao conforto térmico. Neste contexto, este trabalho avaliou a sensação térmica de idosos, comparando-a com os resultados do índice PMV (Voto Médio Estimado: Predicted Mean Vote) de Fanger. Foi realizada uma pesquisa exploratória de abordagem qualitativa (questionários) e quantitativa (medições com termômetros de bulbo seco, bulbo úmido e de globo), conforme a norma ISO 7730:2006; 2011, em três instituições que oferecem serviços de atividades específicas para a faixa populacional na cidade de Bauru (SP): o SESI (Serviço Social da Indústria), o SESC (Serviço Social do Comércio) e a AAPIBR (Associação dos aposentados, pensionistas e idosos de Bauru e Região). Os resultados obtidos demonstraram que as sensações térmicas reais (STR) relatadas pelos idosos (sensações subjetivas) são estatisticamente similares às calculadas pela equação do PMV (sensações analíticas) para três faixas desse índice: -1, 0 e 1.
In the global landscape, the number of people aged 60 and over is increasing rapidly. The vast majority of seniors who live independently wish to continue their current lifestyle, and for that they need extra support and guidance to grow old with wellness and health. These conditions include living in pleasant environments, including thermal comfort. In this context, this study evaluated the thermal sensation of the elderly, comparing it with the results from the PMV (Predicted Mean Vote) method (Fanger). An exploratory research with qualitative (questionnaires) and quantitative approach (measured with dry-bulb, wet-bulb and globe thermometers) was performed according to ISO 7730: 2006; 2011, in three institutions that offer specific activities services for the population group in the city of Bauru (São Paulo state): SESI (Industrial Social Services), SESC (Commercial Social Services) and AAPIBR (Association of retirees, pensioners and seniors of Bauru and region). The results showed that the actual thermal sensations (ATS) reported by the elderly (subjective sensations) are statistically similar to those calculated by the PMV equation (analytical sensations) on a threepoint scale: -1, 0 and 1.
MCA 162174
Gerrett, Nicola. „Body mapping of perceptual responses to sweat and warm stimuli and their relation to physiological parameters“. Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/11000.
Der volle Inhalt der QuelleGobo, João Paulo Assis. „Bioclimatologia subtropical e modelização do conforto humano: da escala local à regional“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/8/8135/tde-23022018-094537/.
Der volle Inhalt der QuelleThis research aims to evaluate and propose human thermal comfort indexes using environmental, individual and subjective variables in the local and regional climatic scales. For that, the hypothesis tested is that the comprehensive study of human thermal comfort, by means of interviews and in-situ weather analysis, provides the basis for the development of an index suitable to be applied also in the regional climatic scale. The first step in the research consisted of an experimental inductive method of field data collection of climatic, individual and subjective variables. Data was collected in the periods of August 2015, January and July of 2016, with questionnaires being applied to the population simultaneously to the collection of meteorological data. Results point to the influence of regional climatic characteristics over the thermal comfort of interviewed individuals, through the direct effects of regional climatic conditions. The influence of gender in thermal comfort responses was confirmed, as well as physiological aspects such as Body Mass Index and age group, in the thermal preference of interviewed individuals. This study also made it possible to calibrate different human thermal comfort classes for the different comfort indexes used in the area of study. Four human thermal comfort indexes were proposed based on environmental, subjective and individual local variables. One index was calculated for Summer, another for Winter, and a third index was developed for both seasons. A fourth index was also calculated for both seasons but using only air temperature, relative humidity and wind speed as variables. Lastly, the spatial representativeness and scale extrapolation of the results for one of the developed models were evaluated statistically in order to propose its validation to the regional climatic scale. Results present the evaluation of human thermal comfort and environmental, subjective and individual variables, as well as the development of an index suitable for both local and regional climatic scales, which provided an appropriate answer to the central hypothesis presented.
Prado, Monica Faria de Almeida. „Conforto térmico nos edifícios das indústrias de calçados de Jaú“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/102/102131/tde-28022013-104203/.
Der volle Inhalt der QuelleThis paper discusses the thermal performance obtained in industrial buildings in the footwear sector, given the importance of obtaining favorable environmental conditions for the execution of activities through an architecture suited to the climate context. Thus, the objective of this research is to evaluate the thermal comfort conditions provided by the buildings of the footwear industries of Jaú city, an important industrial pole. It is characterized the typologies of building\'s construction regarding its geometry, materials and ventilation system. The passive strategies for achieving thermal comfort in the factory sheds are identified and evaluated using the recommendations present in the NBR 15220. To evaluate the thermal comfort conditions it was measured the environmental variables, and the temperature was examined under conditions of thermal acceptability, as established by ASHRAE 55-2010. In order to estimate the thermal sensation of the users, the PMV and PPD indices were used. Also, a questionnaire was applied in order to check the level of employee satisfaction with the working environment. The results show that most of the buildings presents a typology similar with a rectangular geometry and ventilation obtained through frames at the facades. The absence of different passive strategies results in a building with a low thermal inertia and vulnerable to the external weather conditions, and in hot periods, the internal temperature was above 30°C, and during colder periods it was lower than 15°C. The thermal sensation of users in most of the period of the working shift matches the thermal discomfort to the heat, especially in the afternoon, and the percentage of discontentment exceeds 80%. This way, there is a need to optimize the adoption of passive strategies, to provide better thermal conditions of work. For this purpose, simple solutions that provide improvements to the thermal performance of buildings are given, examples: the use of systems which allows evaporative cooling and expansion of openings areas for the ventilation of the building.
Abboud, Abou Jaoude Rachelle. „Développement d’une nouvelle approche d’évaluation du confort dans le contexte des véhicules électriques connectés“. Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM059.
Der volle Inhalt der QuelleThermal comfort of drivers and passengers inside cars compartments is a subject bouncing back to the spotlight with the electrification of vehicles. In fact, air conditioning and heating systems can reduce the battery autonomy of electric vehicles by up to 50% under certain conditions. On the other hand, the most used thermo-physiological models nowadays are still those that consider a standard average person. Many studies showed the limitations of these models in predicting thermal comfort for different populations in complex environments. Therefore, if a personal thermal comfort at minimum vehicle energy consumption is required, a deep consideration should be given to the understanding of the individualization of the thermo-physiological model and to identifying key parameters that have the most influence on thermal comfort. An individualization procedure followed by an experimental validation of the customized model is presented. Considering individual characteristics was shown to improve the model by 20% on average
Toma, Róbert. „Metodika pro testování prostředí v kabině osobního vozu s využitím tepelného manekýna a testovacích osob“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241679.
Der volle Inhalt der QuelleFojtlín, Miloš. „Assesment of the Thermal Environment in Vehicular Cabins“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-408012.
Der volle Inhalt der QuelleEl, Kadri Mohamad. „Modèle thermo-neurophysiologique du corps humain pour l'étude du confort thermique en conditions climatiques hétérogènes et instationnaires“. Thesis, La Rochelle, 2020. http://www.theses.fr/2020LAROS006.
Der volle Inhalt der QuelleIn this thesis, we have developed a new thermoregulation model of the human body based on neurophysiology called Neuro Human Thermal Model (NHTM). It is dedicated to predict physiological variables in asymmetric transient environments. In addition, it is coupled with Zhang’s thermal comfort model to predict the sensation and the thermal comfort of the occupants in indoor spaces.The passive system of the NHTM model is based on that of the Wissler model. This passive system is coupled to an active system based on the signals of thermoreceptors. The passive system is segmented into 21 cylinders which represent the segments of the human body. Each element is divided into 21 layers, in which 15 for tissues and 6 for clothing. Then, each layer is divided into 12 angular sectors. The NHTM model simulates the heat production by metabolism, heat transfer by conduction within the tissues and heat exchange by convection and radiation between the body and the surrounding. The active system simulates physiological mechanisms thanks to signals of central and peripheral thermoreceptors. These signals are calculated by the model of Mekjavic and Morrisson who also developed the shivering model. The skin blood flow is calculated by the Kingma model. We could not develop a sweating model based on the signals of thermoreceptors since experimental data are not available. A comparison was made between the sweating model of Wissler and that of Fiala et al. and the last one was chosen.The NHTM model is able to simulate several types of population. This was done by a sensitivity analysis carried out, using the Morris method, on the parameters of the passive and active systems to find the most influential parameters. Then, an optimization of the NHTM model was done to determine the vector of the parameters which corresponds to the subjects of the experiments of Munir et al. using a genetic algorithm. The obtained results were compared to the models developed by several authors and showed that the NHTM model is the most efficient in most cases.The NHTM model has been coupled to the Zhang model to assess the sensation and thermal comfort. Zhang's model was chosen for its ability to assess local sensations and thermal comfort levels in non-uniform transient environments. Zhang’s model performs the calculation using the NHTM model outputs, namely the skin and esophagus temperatures
Gomes, Adriana Dias. „Relações entre preferências térmicas humanas no interior de edificações e as temperaturas externas: um estudo sobre o método adotado na norma AHSRAE 55-2004“. Universidade Federal de São Carlos, 2007. https://repositorio.ufscar.br/handle/ufscar/4621.
Der volle Inhalt der QuelleFinanciadora de Estudos e Projetos
Thermal comfort is specifically related to thermal behavior in response to both indoor and outdoor air temperature. Human thermal acceptability to climate changes and its effects depend on several aspects. It relies not only on local climatic conditions, but also on personal traits which can interfere seriously with thermal preferences as well as with someone s mental and physical performance. The combination of these factors determines the human thermal acceptability and the satisfaction degree in relation to a specific environment. The more those conditions vary, the higher the percentage of dissatisfied people with an environment is, due to personal requirements of each person. Thus, meeting those expectations of thermal comfort, considering people s needs and limitations, has been an important subject of studies in this field highlighting its importance when planning, designing, and constructing a building. Therefore, human thermal preferences and thermal sensations to hot and cold environments are essential information to various activity sectors because comfort and human performances depend directly on environmental thermal conditions. Since architecture, mainly buildings, is intended for humans, it can be said that it should satisfy its occupants, regarding local climate conditions. In order to have this, it s necessary to determine the comfort temperatures in which people develop better their work activities, optimizing their mental, physical, and intellectual well being. This research consists of a theoretical analytical study of the international large database, compiled by ASHRAE (1997), combining climate conditions with human thermal preferences and sensations. The methodology used by Richard De Dear (1997) in the RP-884 ASHRAE s project was the probit procedure using SAS software, release 8 (SAS Institute, Cary, NC, USA, 1999) to the optimum temperatures obtained, and linear regression to the acceptable comfort limits of the population studied. The comfort limits obtained demonstrate the ratio between occupants comfort temperature and the outdoor temperature, featuring fluctuations of 80% to 90% of thermal acceptability in well-ventilated buildings. The aim of this study is to interpret the method adopted by Richard De Dear (1997) and apply it to the data resulting from the large ASHRAE (2004) Database to understand how the comfort temperatures (optimum temperatures) and the thermal acceptability were obtained for a group of people under predetermined indoor thermal conditions in well- ventilated buildings. The Probit analysis indicates the optimum temperature is 25ºC approximated, exactly 0,5 probability responses, that is, 50% interviewees. In the face the obtained results, it s succeeded the Probit analysis applicability has a great efficacy method to binary variable probability study and determination, which points out two interesting situations to research
O termo conforto térmico abrange muitos fatores do comportamento térmico subjetivo na relação com o clima interno e externo. A aceitabilidade térmica do homem aos efeitos do clima depende de vários aspectos, não só das condições climáticas do local, mas também de fatores pessoais que podem interferir significativamente nas suas preferências térmicas, bem como no rendimento físico e mental do seu organismo. A interação destes dois grupos de fatores determina o grau de satisfação e aceitabilidade térmica do homem em relação a um determinado ambiente. Quanto maior a variação destas condições, maior será a porcentagem de insatisfeitos em um ambiente, devido às exigências pessoais de cada indivíduo. Assim, atender as expectativas do homem em relação ao conforto térmico, considerando suas necessidades e limitações, tem sido um dos focos de estudos nesta área, que destaca a importância do tema no planejamento, projeto e execução de edificações. As sensações e preferências térmicas humanas em relação ao calor e ao frio, portanto, constituem informação indispensável para inúmeros setores de atividades, pois o conforto e o desempenho humano dependem diretamente das condições térmicas dos ambientes. Sendo a arquitetura, em particular o edifício, feito para o homem, conclui-se que este deve atender satisfatoriamente ao usuário, dentro das condições climáticas locais. Para isto, é necessário conhecer as temperaturas de conforto sob as quais o homem melhor desenvolve suas atividades de trabalho, otimizando seu bem-estar físico, intelectual e mental. Esta pesquisa consiste em um estudo teórico analítico da ampla base internacional de dados, compilada pela ASHRAE (1997), relacionando condições climáticas do ar e sensações e preferências térmicas humanas. A metodologia utilizada por Richard De Dear (1997) no projeto ASHRAE RP-884 foi o procedimento probit no software SAS, versão 8 (SAS Institute, Cary, NC, USA, 1999) para as temperaturas preferidas obtidas, e de regressão linear para os limites de conforto aceitáveis pela população avaliada. Estes limites de conforto resultantes expressam a relação entre temperatura de conforto do usuário e temperatura externa do ar, apresentando variações de 80% e 90% de aceitabilidade térmica, em edifícios naturalmente ventilados. O objetivo geral desta pesquisa é interpretar o método adotado por De Dear (1997) e aplicá-lo nos dados obtidos da ampla Base de Dados da ASHRAE (2004), como fim de entender como foram obtidas as temperaturas de conforto (temperaturas preferidas) e a aceitabilidade térmica de pessoas submetidas a determinadas condições térmicas internas, em ambientes naturalmente ventilados. Os resultados da análise Probit mostram que a temperatura preferida é aproximadamente 25ºC, a exatamente 0,5 de probabilidade de respostas, ou seja, 50% dos entrevistados. Diante dos resultados obtidos, verificou-se a aplicabilidade da análise Probit, como um método de grande eficácia para o estudo e a determinação de probabilidades de variáveis binárias, as quais apontam duas situações de interesse para a pesquisa
Kabanshi, Alan. „Experimental study of an intermittent ventilation system in high occupancy spaces“. Doctoral thesis, Högskolan i Gävle, Energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-23754.
Der volle Inhalt der QuelleLokaler där många människor vistas, som t.ex. klassrum, är ofta svåra att ventilera. Att upprätthålla en bra termisk komfort kräver en hög energianvändning. Vanligtvis blir det en kompromiss mellan låg energianvändning och bra kvalitet på inomhusmiljön (IEQ). Dålig IEQ får konsekvenser för människors hälsa, produktivitet och komfort. Alternativa ventilationsstrategier, som använder förhöjda lufthastigheter, kan minska kylbehovet och därmed energianvändningen. I denna avhandling utvärderas en ny ventilationsstrategi, Intermittenta luftstrålar (IAJS), där korta perioder med hög lufthastighet genererar en svalkande effekt, när rummets temperatur upplevs som för hög. Det primära syftet med arbetet var att undersöka potentialen hos IAJS som ett ventilationssystem för klassrum, där den termiska lasten ofta är hög. Strategin jämförs mot traditionella ventilationsprinciper som omblandande ventilation (MV) och deplacerande ventilation (DV). Parametrar som luftdistributionsindex, termisk komfort, luftkvalitet och energibesparing har utvärderats. Alla studier utfördes i klimatkammare. Resultaten visar att medan MV och DV skapar konstanta luftflödesförhållanden genererar IAJS cykliska hastighetsprofiler samt en sinusformad temperaturvariation i vistelsezonen. IAJS klarar att bibehålla ett bra termiskt klimat vid högre operativa temperaturer jämfört med MV. I en jämförelse med ett traditionellt HVAC-system visar beräkningar att dess börvärde kan höjas från 2.3 till 4.5 °C med bibehållen termisk komfort. Detta indikerar en avsevärd energibesparingspotential vid användande av IAJS.
Huynh, Kien Khanh. „Human Thermal Comfort“. MSSTATE, 2001. http://sun.library.msstate.edu/ETD-db/theses/available/etd-04092001-135104/.
Der volle Inhalt der QuelleCakir, Cagri. „Assessing Thermal Comfort Conditions“. Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607936/index.pdf.
Der volle Inhalt der QuelleQiao, Zhou. „Thermal comfort in vehicles“. Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-17422.
Der volle Inhalt der QuelleKranz, Jürgen. „Intelligent automotive thermal comfort control“. Thesis, Nelson Mandela Metropolitan University, 2011. http://hdl.handle.net/10948/1435.
Der volle Inhalt der QuelleKhodakarami, Jamal. „Achieving thermal comfort in Iranian hospitals“. Thesis, Cardiff University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445191.
Der volle Inhalt der QuelleAbdulshukor, Abdulmalik Bin. „Human thermal comfort in tropical climates“. Thesis, University College London (University of London), 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294561.
Der volle Inhalt der QuelleNikolopoulou, Maria-Heleni. „Thermal comfort in outdoor urban spaces“. Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397141.
Der volle Inhalt der QuelleAlhajj, Assaf Salim. „Innovative nanostructured textiles for thermal comfort“. Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I012.
Der volle Inhalt der QuelleFor the past ten years, photonic nanostructures have represented a paradigm for the control of thermal radiations, offering a panel of exciting properties for energy applications. Because of their abilities to control and manage electromagnetic waves at the Mid-Infrared (Mid-IR) wavelength scale, photonic nanostructures demonstrate their ability to manage thermal radiations properties in a way drastically different from conventional thermal emitters. The fundamental advances in controlling thermal radiation led to different applications in the energy domain, as thermo photovoltaic devices or through the concept of daytime radiative cooling to passively decrease the temperature of terrestrial structures. Recently, another field of application has appeared in the thermal radiation control, with the introduction of photonic nanostructures in textiles for personal thermoregulation. The goal of the thesis is to study different passive photonic membranes that modulate the human body optical radiations in the Mid-IR for personal thermoregulation. We have investigated the optical properties of different polymer membranes, considering the effect of their structuration. We showed that a photonic crystal membrane is able to modulate the transmission coefficient by 28% in benefit or deficit of both the absorption and reflection. We analyzed the thermal balance between the human body and the indoor environment through the photonic membrane, considering the radiation, convection and conduction mechanisms. We found that the temperature of the skin is almost 2°C higher when the human body is clothed with a structured membrane. The study was carried out on analytical calculations and numerical simulation with the help of the finite element method (FEM). The numerical study was supported by experiments in fabrication in the IEMN cleaning room and in characterization by infrared spectroscopy (FTIR) at the HEI engineering school
Heidari, Shahin. „Thermal comfort in Iranian courtyard housing“. Thesis, University of Sheffield, 2000. http://etheses.whiterose.ac.uk/10239/.
Der volle Inhalt der QuelleJamal, Goran A. „A quantitative study of thermal sensation in man“. Thesis, University of Glasgow, 1986. http://theses.gla.ac.uk/4852/.
Der volle Inhalt der QuelleNasrollahi, Nazanin. „Thermal environments and occupant thermal comfort in Iranian office buildings“. Thesis, Cardiff University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445202.
Der volle Inhalt der QuelleMatthews, Jane. „Thermal comfort in the havelis of Jaisalmer“. Thesis, University of East London, 2000. http://roar.uel.ac.uk/1252/.
Der volle Inhalt der QuelleMallick, Fuad Hassan. „Thermal comfort for urban housing in Bangladesh“. Thesis, Open University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239724.
Der volle Inhalt der QuelleKotopouleas, Alexis Georgios. „Thermal comfort conditions in airport terminal buildings“. Thesis, University of Kent, 2015. https://kar.kent.ac.uk/52665/.
Der volle Inhalt der QuelleKazkaz, Mohammad. „Compact Sensors for Evaluation the Thermal Comfort“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-364619.
Der volle Inhalt der QuelleKubaha, Kuskana. „Asymmetric radiant fields and human thermal comfort“. Thesis, De Montfort University, 2005. http://hdl.handle.net/2086/13269.
Der volle Inhalt der QuelleRuponen, Mika Tapio. „Operation and thermal comfort provision using induction units“. Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507660.
Der volle Inhalt der QuelleSalleh, Elias Bin. „Tropical urban outdoor environment and human thermal comfort“. Thesis, Open University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387286.
Der volle Inhalt der QuelleFederspiel, Clifford Conrad. „User-adaptable and minimum-power thermal comfort control“. Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13223.
Der volle Inhalt der QuelleShi, Hongsen. „Building Energy Efficiency Improvement and Thermal Comfort Diagnosis“. The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555110595177379.
Der volle Inhalt der QuelleAl-Shibami, Fuad Hamoud. „Thermal comfort and energy efficiency in Yemeni houses“. Thesis, University of Sheffield, 2004. http://etheses.whiterose.ac.uk/12842/.
Der volle Inhalt der Quelle黎浩然 und Ho-yin Albert Lai. „Artificial intelligence based thermal comfort control with CFD modelling“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B3122278X.
Der volle Inhalt der QuelleWu, Jiayi, und 吴佳诣. „Slope flows and thermal comfort for hospital natural ventilation“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45159105.
Der volle Inhalt der QuelleAhmed, Azni Zain. „Daylighting and shading for thermal comfort in Malaysian buildings“. Thesis, University of Hertfordshire, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323648.
Der volle Inhalt der QuelleZingano, Bernard Wilson. „Effects of solar radiation on buildings and thermal comfort“. Thesis, University of Hertfordshire, 2003. http://hdl.handle.net/2299/14151.
Der volle Inhalt der QuelleIbrahim, Siti Halipah. „Thermal comfort in modern low-income housing in Malaysia“. Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400947.
Der volle Inhalt der QuelleAri, Seckin. „Intelligent modeling of individual thermal comfort and energy optimization“. Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2009. http://wwwlib.umi.com/cr/syr/main.
Der volle Inhalt der QuelleLai, Ho-yin Albert. „Artificial intelligence based thermal comfort control with CFD modelling /“. Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21929555.
Der volle Inhalt der QuelleFiala, Dusan. „Dynamic simulation of human heat transfer and thermal comfort“. Thesis, Online version, 1998. http://ethos.bl.uk/OrderDetails.do?did=1&uin=uk.bl.ethos.340123.
Der volle Inhalt der QuelleFelgner, Felix. „Design of virtual airflow sensors for thermal comfort control“. Aachen Shaker, 2008. http://d-nb.info/992052807/04.
Der volle Inhalt der QuelleJohansson, Emma. „The thermal comfort of the cockpit: A pilot's experience“. Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203773.
Der volle Inhalt der QuelleSaab gör stora satsningar för att säkerställa att cockpiten är en god arbetsplats för piloten. Den här rapporten syftar till att öka kunskapen om termisk komfort genom att kombinera Saabs atmosfärs-, kabin-, och pilotmodeller. För att kunna verifiera att den kombinerade modellen beskriver verkligheten genomfördes en kvalitativ studie med testpiloter. Intervjuerna reducerades till ett par flyg-scenarier, som sedan testades i den kombinerade modellen. Detta för att kunna verifiera att de upplevda obekvämligheterna kunde förutspås. Den kombinerade modellen utökades med en prediktion av bekvämligheten enligt Europeisk standard. Ur intervjuerna kunde situationer identifieras då piloterna känner termiskt obehag. Av dessa situationer är två flygfall och ett markfall, där piloten befinner sig utanför cockpit. Modellen simulerar hur piloten påverkas av den termiska miljön i kabin, på grund av detta kunde inte markfallet analyseras. Modellsimuleringen resulterade i figurer som visar temperaturen i kroppsdelar som piloterna har uttryck känns obehagliga. Predicted Mean Vote, PMV, förutspår komfort på en 6-gradig skala givet omgivningsparametrar så som tryck och temperatur. Predicted Percentage Dissatisfied, PPD, beskriver hur stor andel, i procent, som upplever obehag vid ett givet PMV. Dessa mått på komfort användes för att beräkna komforten i de olika kroppsdelarna. Modellsimuleringen av pilotkomforten stämmer överens med det piloterna nämnde till viss del. I vissa kroppsdelar stämmer det inte överens. Då modellen inte tar hänsyn till fuktighet vid beräkning av kroppstemperaturer kan detta vara en anledning till varför den inte stämmer helt. Fuktigheten påverkar PMV och PPD beräkningarna och i fall 2 visar det sig att PPD ökar med en ökad fuktighet. Slutligen, behöver modellens ses över, och detaljgraden ökas, för att den här rapportens metoder skall vara användbara vid tillverkningen av flygplan.
Hodder, S. G. „Thermal comfort in vehicles : the effects of solar radiation“. Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/6919.
Der volle Inhalt der QuelleGuéritée, Julien. „Thermal comfort during and following water immersion in humans“. Thesis, University of Portsmouth, 2013. https://researchportal.port.ac.uk/portal/en/theses/thermal-comfort-during-and-following-water-immersion-in-humans(70468918-08d8-4d68-a584-35abe3ce2617).html.
Der volle Inhalt der QuelleEfeoma, Meshack Oghenekaro. „The influence of clothing on adaptive thermal comfort : a study of the thermal comfort of office workers in hot humid conditions in Enugu, Nigeria“. Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/25423.
Der volle Inhalt der QuelleBarakat, Magdi H. „Computation of indoor airflow for thermal comfort in residential buildings“. Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/23308.
Der volle Inhalt der QuelleDullah, Abd Rahman. „Optimising the comfort in cricket helmet by thermal/moisture mapping“. Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.570308.
Der volle Inhalt der Quelle