Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Semiconducting polymer blends“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Semiconducting polymer blends" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Semiconducting polymer blends"
Kulatunga, Piumi, Nastaran Yousefi und Simon Rondeau-Gagné. „Polyethylene and Semiconducting Polymer Blends for the Fabrication of Organic Field-Effect Transistors: Balancing Charge Transport and Stretchability“. Chemosensors 10, Nr. 6 (24.05.2022): 201. http://dx.doi.org/10.3390/chemosensors10060201.
Der volle Inhalt der QuelleMcNutt, William W., Aristide Gumyusenge, Luke A. Galuska, Zhiyuan Qian, Jiazhi He, Xiaodan Gu und Jianguo Mei. „N-Type Complementary Semiconducting Polymer Blends“. ACS Applied Polymer Materials 2, Nr. 7 (10.06.2020): 2644–50. http://dx.doi.org/10.1021/acsapm.0c00261.
Der volle Inhalt der QuelleYu, G., H. Nishino, A. J. Heeger, T. A. Chen und R. D. Rieke. „Enhanced electroluminescence from semiconducting polymer blends“. Synthetic Metals 72, Nr. 3 (Juni 1995): 249–52. http://dx.doi.org/10.1016/0379-6779(95)03282-7.
Der volle Inhalt der QuelleGong, X., W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses und A. J. Heeger. „White Electrophosphorescence from Semiconducting Polymer Blends“. Advanced Materials 16, Nr. 7 (05.04.2004): 615–19. http://dx.doi.org/10.1002/adma.200306230.
Der volle Inhalt der QuelleGumyusenge, Aristide, Dung T. Tran, Xuyi Luo, Gregory M. Pitch, Yan Zhao, Kaelon A. Jenkins, Tim J. Dunn, Alexander L. Ayzner, Brett M. Savoie und Jianguo Mei. „Semiconducting polymer blends that exhibit stable charge transport at high temperatures“. Science 362, Nr. 6419 (06.12.2018): 1131–34. http://dx.doi.org/10.1126/science.aau0759.
Der volle Inhalt der QuelleStingelin, Natalie. „(Invited) Manipulating Photoexcitations of Flexible-Chain Polymer Semiconductors Via the Local Environment“. ECS Meeting Abstracts MA2023-01, Nr. 14 (28.08.2023): 1347. http://dx.doi.org/10.1149/ma2023-01141347mtgabs.
Der volle Inhalt der QuelleMulderig, Andrew J., Yan Jin, Fei Yu, Jong Keum, Kunlun Hong, James F. Browning, Gregory Beaucage, Gregory S. Smith und Vikram K. Kuppa. „Determination of active layer morphology in all-polymer photovoltaic cells“. Journal of Applied Crystallography 50, Nr. 5 (18.08.2017): 1289–98. http://dx.doi.org/10.1107/s1600576717010457.
Der volle Inhalt der QuelleCleave, V., G. Yahioglu, P. Le Barny, D. H. Hwang, A. B. Holmes, R. H. Friend und N. Tessler. „Transfer Processes in Semiconducting Polymer-Porphyrin Blends“. Advanced Materials 13, Nr. 1 (Januar 2001): 44–47. http://dx.doi.org/10.1002/1521-4095(200101)13:1<44::aid-adma44>3.0.co;2-#.
Der volle Inhalt der QuelleAliouat, Mouaad Yassine, Dmitriy Ksenzov, Stephanie Escoubas, Jörg Ackermann, Dominique Thiaudière, Cristian Mocuta, Mohamed Cherif Benoudia, David Duche, Olivier Thomas und Souren Grigorian. „Direct Observations of the Structural Properties of Semiconducting Polymer: Fullerene Blends under Tensile Stretching“. Materials 13, Nr. 14 (10.07.2020): 3092. http://dx.doi.org/10.3390/ma13143092.
Der volle Inhalt der QuelleJo, Sae Byeok, Wi Hyoung Lee, Longzhen Qiu und Kilwon Cho. „Polymer blends with semiconducting nanowires for organic electronics“. Journal of Materials Chemistry 22, Nr. 10 (2012): 4244. http://dx.doi.org/10.1039/c2jm16059e.
Der volle Inhalt der QuelleDissertationen zum Thema "Semiconducting polymer blends"
Griffo, Michael S. „Charge dynamics in polymer-nanoparticle blends for nonvolatile memory : Surface enhanced fluorescence of a semiconducting polymer; surface plasmon assisted luminescent solar concentrator waveguides /“. Diss., Digital Dissertations Database. Restricted to UC campuses, 2009. http://uclibs.org/PID/11984.
Der volle Inhalt der QuelleAl, Yaman Yasmina. „Comprendre les mélanges de polymères pour leur utilisation comme conducteurs mixtes d'ions et d'électrons“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0431.
Der volle Inhalt der QuelleOrganic Electrochemical devices are emerging as vital components in bioelectronics, particularly for applications requiring interfacing with biological systems, such as medical implants and wearable devices. A recurring challenge in the performance of these devices is the inefficient ion transport within the semiconducting polymers used, which limits their overall efficiency. To address this, we initially investigated newly synthesized hydrophilic polymers designed to enhance ion mobility. However, these materials exhibited poor solubility, leading to ineffective device performance. Consequently, we shifted our approach to polymer blending as a more practical solution. By blending the hydrophobic poly(3-hexylthiophene) (P3HT) with hydrophilic polymers such as P3HT-b-PEO or polyethylene oxide (PEO), we enhanced ion mobility while maintaining the necessary electronic properties. These blends demonstrated clear transistor behavior, with P3HT-b-PEO acting as a compatibilizer, significantly improving stability comparedto PEO alone. Blends with higher molecular weight P3HT also exhibited greater stability and faster response times, likely due to increased polymer entanglement. When this blending strategy was applied to the more rigid polymer Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)] (PDPP2T-TT-OD), we observed similar improvements in device performance, although the polymer's rigid backbone limited compatibility. Overall, this research highlights the effectiveness of polymer blending in optimizing ion transport and stability in OECTs, paving the way for more efficient bio-interfacing electronic devices
Chan, Ka Hin. „Charge injection and transport characterization of semiconducting polymers and their bulk heterojunction blends“. HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1405.
Der volle Inhalt der Quelle(8086511), Aristide Gumyusenge. „High Temperature Semiconducting Polymers and Polymer Blends“. Thesis, 2019.
Den vollen Inhalt der Quelle findenChuang, Ching-Heng, und 莊靖恆. „Morphology and Electronic Properties of Semiconducting Polymer and Branched Polyethylene Blends and the synthesis of Self-Healing and elastic random copolymer“. Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8wkqrq.
Der volle Inhalt der QuelleBuchteile zum Thema "Semiconducting polymer blends"
McNeill, Christopher R. „Conjugated Polymer Blends: Toward All-Polymer Solar Cells“. In Semiconducting Polymer Composites, 399–425. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch14.
Der volle Inhalt der QuelleLoos, Joachim. „Nanoscale Morphological Characterization for Semiconductive Polymer Blends“. In Semiconducting Polymer Composites, 39–64. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527648689.ch2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Semiconducting polymer blends"
Gong, Xiong, Daniel Moses und Alan J. Heeger. „White electrophosphorescence from semiconducting polymer blends“. In Optical Science and Technology, the SPIE 49th Annual Meeting, herausgegeben von Zakya H. Kafafi und Paul A. Lane. SPIE, 2004. http://dx.doi.org/10.1117/12.559072.
Der volle Inhalt der QuelleMei, Jianguo, und Aristide Gumyusenge. „Semiconducting polymer blends that exhibit stable charge transport at high temperatures (Conference Presentation)“. In Physical Chemistry of Semiconductor Materials and Interfaces XVIII, herausgegeben von Daniel Congreve, Hugo A. Bronstein, Christian Nielsen und Felix Deschler. SPIE, 2019. http://dx.doi.org/10.1117/12.2529702.
Der volle Inhalt der QuelleBeek, Waldo J. E., Martijn M. Wienk und René A. J. Janssen. „Hybrid bulk heterojunction solar cells: blends of ZnO semiconducting nanoparticles and conjugated polymers“. In Optics & Photonics 2005, herausgegeben von Zakya H. Kafafi und Paul A. Lane. SPIE, 2005. http://dx.doi.org/10.1117/12.614911.
Der volle Inhalt der Quelle