Zeitschriftenartikel zum Thema „Semantic Explainable AI“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Semantic Explainable AI" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Li, Ding, Yan Liu und Jun Huang. „Assessment of Software Vulnerability Contributing Factors by Model-Agnostic Explainable AI“. Machine Learning and Knowledge Extraction 6, Nr. 2 (16.05.2024): 1087–113. http://dx.doi.org/10.3390/make6020050.
Der volle Inhalt der QuelleTurley, Jordan E., Jeffrey A. Dunne und Zerotti Woods. „Explainable AI for trustworthy image analysis“. Journal of the Acoustical Society of America 156, Nr. 4_Supplement (01.10.2024): A109. https://doi.org/10.1121/10.0035277.
Der volle Inhalt der QuelleThakker, Dhavalkumar, Bhupesh Kumar Mishra, Amr Abdullatif, Suvodeep Mazumdar und Sydney Simpson. „Explainable Artificial Intelligence for Developing Smart Cities Solutions“. Smart Cities 3, Nr. 4 (13.11.2020): 1353–82. http://dx.doi.org/10.3390/smartcities3040065.
Der volle Inhalt der QuelleMankodiya, Harsh, Dhairya Jadav, Rajesh Gupta, Sudeep Tanwar, Wei-Chiang Hong und Ravi Sharma. „OD-XAI: Explainable AI-Based Semantic Object Detection for Autonomous Vehicles“. Applied Sciences 12, Nr. 11 (24.05.2022): 5310. http://dx.doi.org/10.3390/app12115310.
Der volle Inhalt der QuelleAyoob, Mohamed, Oshan Nettasinghe, Vithushan Sylvester, Helmini Bowala und Hamdaan Mohideen. „Peering into the Heart: A Comprehensive Exploration of Semantic Segmentation and Explainable AI on the MnMs-2 Cardiac MRI Dataset“. Applied Computer Systems 30, Nr. 1 (01.01.2025): 12–20. https://doi.org/10.2478/acss-2025-0002.
Der volle Inhalt der QuelleTerziyan, Vagan, und Oleksandra Vitko. „Explainable AI for Industry 4.0: Semantic Representation of Deep Learning Models“. Procedia Computer Science 200 (2022): 216–26. http://dx.doi.org/10.1016/j.procs.2022.01.220.
Der volle Inhalt der QuelleSchorr, Christian, Payman Goodarzi, Fei Chen und Tim Dahmen. „Neuroscope: An Explainable AI Toolbox for Semantic Segmentation and Image Classification of Convolutional Neural Nets“. Applied Sciences 11, Nr. 5 (03.03.2021): 2199. http://dx.doi.org/10.3390/app11052199.
Der volle Inhalt der QuelleFutia, Giuseppe, und Antonio Vetrò. „On the Integration of Knowledge Graphs into Deep Learning Models for a More Comprehensible AI—Three Challenges for Future Research“. Information 11, Nr. 2 (22.02.2020): 122. http://dx.doi.org/10.3390/info11020122.
Der volle Inhalt der QuelleHindennach, Susanne, Lei Shi, Filip MiletiĆ und Andreas Bulling. „Mindful Explanations: Prevalence and Impact of Mind Attribution in XAI Research“. Proceedings of the ACM on Human-Computer Interaction 8, CSCW1 (17.04.2024): 1–43. http://dx.doi.org/10.1145/3641009.
Der volle Inhalt der QuelleSilva, Vivian S., André Freitas und Siegfried Handschuh. „Exploring Knowledge Graphs in an Interpretable Composite Approach for Text Entailment“. Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 7023–30. http://dx.doi.org/10.1609/aaai.v33i01.33017023.
Der volle Inhalt der QuelleKerr, Alison Duncan, und Kevin Scharp. „The End of Vagueness: Technological Epistemicism, Surveillance Capitalism, and Explainable Artificial Intelligence“. Minds and Machines 32, Nr. 3 (September 2022): 585–611. http://dx.doi.org/10.1007/s11023-022-09609-7.
Der volle Inhalt der QuelleErxuan Zeng, Yichi Long, Xiaoyao Wang, Yuting Xiao und Yuxue Feng. „Literature Review: Personalized Learning Recommendation System in Educational Scenarios: XAI-Driven Student Behavior Understanding and Teacher Collaboration Mechanism“. Frontiers in Interdisciplinary Applied Science 2, Nr. 01 (17.03.2025): 78–92. https://doi.org/10.71465/fias.v2i01.17.
Der volle Inhalt der QuelleAkula, Arjun, Shuai Wang und Song-Chun Zhu. „CoCoX: Generating Conceptual and Counterfactual Explanations via Fault-Lines“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 03 (03.04.2020): 2594–601. http://dx.doi.org/10.1609/aaai.v34i03.5643.
Der volle Inhalt der QuelleSchwegler, Markus, Christoph Müller und Alexander Reiterer. „Integrated Gradients for Feature Assessment in Point Cloud-Based Data Sets“. Algorithms 16, Nr. 7 (28.06.2023): 316. http://dx.doi.org/10.3390/a16070316.
Der volle Inhalt der QuelleMilella, Frida, Davide Donato Russo und Stefania Bandini. „AI-Powered Solutions to Support Informal Caregivers in Their Decision-Making: A Systematic Review of the Literature <sup><a class="tippyShow" data-tippy-arrow="true" data-tippy-content="This article is an extended version of the conference paper: Milella F, Russo DD, Bandini S, How artificial intelligence can support informal caregivers in their caring duties to elderly? a systematic review of the literature. In: AIXAS2023 Italian Workshop on Artificial Intelligence for an Ageing Society, co-located with the 22nd International Conference of the Italian Association for Artificial Intelligence (AIxIA 2023), November 6-9, 2023, Rome, Italy (forthcoming)." data-tippy-interactive="true" data-tippy-theme="light-border" style="cursor:pointer">1</a></sup>“. OBM Geriatrics 07, Nr. 04 (15.12.2023): 1–11. http://dx.doi.org/10.21926/obm.geriatr.2304262.
Der volle Inhalt der QuelleVenkatesh Nagubathula. „Document Automation in Enterprise Integration: A Technical Framework for Cloud-Based SaaS Solutions“. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 11, Nr. 2 (04.03.2025): 486–512. https://doi.org/10.32628/cseit25112385.
Der volle Inhalt der QuelleDemertzis, Konstantinos, Konstantinos Rantos, Lykourgos Magafas, Charalabos Skianis und Lazaros Iliadis. „A Secure and Privacy-Preserving Blockchain-Based XAI-Justice System“. Information 14, Nr. 9 (28.08.2023): 477. http://dx.doi.org/10.3390/info14090477.
Der volle Inhalt der QuelleSauter, Daniel, Georg Lodde, Felix Nensa, Dirk Schadendorf, Elisabeth Livingstone und Markus Kukuk. „Validating Automatic Concept-Based Explanations for AI-Based Digital Histopathology“. Sensors 22, Nr. 14 (18.07.2022): 5346. http://dx.doi.org/10.3390/s22145346.
Der volle Inhalt der QuelleVandana Kalra. „Coupling NLP for Intelligent Knowledge Management in Organizations: A Framework for AI-Powered Decision Support“. Journal of Information Systems Engineering and Management 10, Nr. 10s (13.02.2025): 23–28. https://doi.org/10.52783/jisem.v10i10s.1337.
Der volle Inhalt der QuelleDwivedi, Kshitij, Michael F. Bonner, Radoslaw Martin Cichy und Gemma Roig. „Unveiling functions of the visual cortex using task-specific deep neural networks“. PLOS Computational Biology 17, Nr. 8 (13.08.2021): e1009267. http://dx.doi.org/10.1371/journal.pcbi.1009267.
Der volle Inhalt der QuelleNguyen, Anh Duy, Huy Hieu Pham, Huynh Thanh Trung, Quoc Viet Hung Nguyen, Thao Nguyen Truong und Phi Le Nguyen. „High accurate and explainable multi-pill detection framework with graph neural network-assisted multimodal data fusion“. PLOS ONE 18, Nr. 9 (28.09.2023): e0291865. http://dx.doi.org/10.1371/journal.pone.0291865.
Der volle Inhalt der QuelleKim, Tae Hoon, Moez Krichen, Stephen Ojo, Meznah A. Alamro und Gabriel Avelino Sampedro. „TSSG-CNN: A Tuberculosis Semantic Segmentation-Guided Model for Detecting and Diagnosis Using the Adaptive Convolutional Neural Network“. Diagnostics 14, Nr. 11 (01.06.2024): 1174. http://dx.doi.org/10.3390/diagnostics14111174.
Der volle Inhalt der QuelleBanawan, Michelle P., Jinnie Shin, Tracy Arner, Renu Balyan, Walter L. Leite und Danielle S. McNamara. „Shared Language: Linguistic Similarity in an Algebra Discussion Forum“. Computers 12, Nr. 3 (27.02.2023): 53. http://dx.doi.org/10.3390/computers12030053.
Der volle Inhalt der QuelleKolekar, Suresh, Shilpa Gite, Biswajeet Pradhan und Abdullah Alamri. „Explainable AI in Scene Understanding for Autonomous Vehicles in Unstructured Traffic Environments on Indian Roads Using the Inception U-Net Model with Grad-CAM Visualization“. Sensors 22, Nr. 24 (10.12.2022): 9677. http://dx.doi.org/10.3390/s22249677.
Der volle Inhalt der QuelleRodríguez Oconitrillo, Luis Raúl Rodríguez, Juan José Vargas, Arturo Camacho, Álvaro Burgos und Juan Manuel Corchado. „RYEL: An Experimental Study in the Behavioral Response of Judges Using a Novel Technique for Acquiring Higher-Order Thinking Based on Explainable Artificial Intelligence and Case-Based Reasoning“. Electronics 10, Nr. 12 (21.06.2021): 1500. http://dx.doi.org/10.3390/electronics10121500.
Der volle Inhalt der QuelleIvanisenko, Timofey V., Pavel S. Demenkov und Vladimir A. Ivanisenko. „An Accurate and Efficient Approach to Knowledge Extraction from Scientific Publications Using Structured Ontology Models, Graph Neural Networks, and Large Language Models“. International Journal of Molecular Sciences 25, Nr. 21 (03.11.2024): 11811. http://dx.doi.org/10.3390/ijms252111811.
Der volle Inhalt der QuelleAdarsh, Shivam, Elliott Ash, Stefan Bechtold, Barton Beebe und Jeanne Fromer. „Automating Abercrombie: Machine‐learning trademark distinctiveness“. Journal of Empirical Legal Studies 21, Nr. 4 (17.11.2024): 826–60. http://dx.doi.org/10.1111/jels.12398.
Der volle Inhalt der QuelleDel Gaizo, John, Curry Sherard, Khaled Shorbaji, Brett Welch, Roshan Mathi und Arman Kilic. „Prediction of coronary artery bypass graft outcomes using a single surgical note: An artificial intelligence-based prediction model study“. PLOS ONE 19, Nr. 4 (25.04.2024): e0300796. http://dx.doi.org/10.1371/journal.pone.0300796.
Der volle Inhalt der QuelleRaikov, Alexander N. „Subjectivity of Explainable Artificial Intelligence“. Russian Journal of Philosophical Sciences 65, Nr. 1 (25.06.2022): 72–90. http://dx.doi.org/10.30727/0235-1188-2022-65-1-72-90.
Der volle Inhalt der QuelleWyatt, Lucie S., Lennard M. van Karnenbeek, Mark Wijkhuizen, Freija Geldof und Behdad Dashtbozorg. „Explainable Artificial Intelligence (XAI) for Oncological Ultrasound Image Analysis: A Systematic Review“. Applied Sciences 14, Nr. 18 (10.09.2024): 8108. http://dx.doi.org/10.3390/app14188108.
Der volle Inhalt der QuelleDarwiche, Adnan, und Pierre Marquis. „On Quantifying Literals in Boolean Logic and its Applications to Explainable AI“. Journal of Artificial Intelligence Research 72 (11.10.2021): 285–328. http://dx.doi.org/10.1613/jair.1.12756.
Der volle Inhalt der QuelleHe, Gaole, Agathe Balayn, Stefan Buijsman, Jie Yang und Ujwal Gadiraju. „Opening the Analogical Portal to Explainability: Can Analogies Help Laypeople in AI-assisted Decision Making?“ Journal of Artificial Intelligence Research 81 (19.09.2024): 117–62. http://dx.doi.org/10.1613/jair.1.15118.
Der volle Inhalt der QuelleU, Vignesh, und Tushar Moolchandani. „Revolutionizing Autonomous Parking: GNN-Powered Slot Detection for Enhanced Efficiency“. Interdisciplinary Journal of Information, Knowledge, and Management 19 (2024): 019. http://dx.doi.org/10.28945/5334.
Der volle Inhalt der QuelleRajabi, Enayat, und Kobra Etminani. „Knowledge-graph-based explainable AI: A systematic review“. Journal of Information Science, 24.09.2022, 016555152211128. http://dx.doi.org/10.1177/01655515221112844.
Der volle Inhalt der QuelleVassiliades, Alexandros, Nick Bassiliades und Theodore Patkos. „Argumentation and explainable artificial intelligence: a survey“. Knowledge Engineering Review 36 (2021). http://dx.doi.org/10.1017/s0269888921000011.
Der volle Inhalt der QuelleV, Prasanna, Umarani S, Suganthi B, Ranjani V, Manigandan Thangaraju und Uma Maheswari P. „Advanced Explainable AI: Self Attention Deep Neural Network of Text Classification“. Journal of Machine and Computing, 05.07.2024, 586–93. http://dx.doi.org/10.53759/7669/jmc202404056.
Der volle Inhalt der QuelleSun, Changqi, Hao Xu, Yuntian Chen und Dongxiao Zhang. „AS‐XAI: Self‐Supervised Automatic Semantic Interpretation for CNN“. Advanced Intelligent Systems, 30.09.2024. http://dx.doi.org/10.1002/aisy.202400359.
Der volle Inhalt der QuellePekar, Viktor, Marina Candi, Ahmad Beltagui, Nikolaos Stylos und Wei Liu. „Explainable text-based features in predictive models of crowdfunding campaigns“. Annals of Operations Research, 12.01.2024. http://dx.doi.org/10.1007/s10479-023-05800-w.
Der volle Inhalt der QuelleChari, Shruthi, Oshani Seneviratne, Mohamed Ghalwash, Sola Shirai, Daniel M. Gruen, Pablo Meyer, Prithwish Chakraborty und Deborah L. McGuinness. „Explanation Ontology: A general-purpose, semantic representation for supporting user-centered explanations“. Semantic Web, 18.05.2023, 1–31. http://dx.doi.org/10.3233/sw-233282.
Der volle Inhalt der QuelleDaga, Enrico, und Paul Groth. „Data journeys: Explaining AI workflows through abstraction“. Semantic Web, 15.06.2023, 1–27. http://dx.doi.org/10.3233/sw-233407.
Der volle Inhalt der QuelleLiu, Pengyuan, Yan Zhang und Filip Biljecki. „Explainable spatially explicit geospatial artificial intelligence in urban analytics“. Environment and Planning B: Urban Analytics and City Science, 29.09.2023. http://dx.doi.org/10.1177/23998083231204689.
Der volle Inhalt der QuelleLiu, Yang, Xingchen Ding, Shun Peng und Chengzhi Zhang. „Leveraging ChatGPT to optimize depression intervention through explainable deep learning“. Frontiers in Psychiatry 15 (06.06.2024). http://dx.doi.org/10.3389/fpsyt.2024.1383648.
Der volle Inhalt der QuelleColucci, Simona, Francesco M. Donini und Eugenio Di Sciascio. „A review of reasoning characteristics of RDF‐based Semantic Web systems“. WIREs Data Mining and Knowledge Discovery, 28.03.2024. http://dx.doi.org/10.1002/widm.1537.
Der volle Inhalt der Quelle„Semantic NLP Technologies in Information Retrieval Systems for Legal Research“. Advances in Machine Learning & Artificial Intelligence 2, Nr. 1 (05.08.2021). http://dx.doi.org/10.33140/amlai.02.01.05.
Der volle Inhalt der QuelleIbrahim, Rami, und M. Omair Shafiq. „Explainable Convolutional Neural Networks: A Taxonomy, Review, and Future Directions“. ACM Computing Surveys, 21.09.2022. http://dx.doi.org/10.1145/3563691.
Der volle Inhalt der QuelleChatterjee, Ayan, Michael A. Riegler, K. Ganesh und Pål Halvorsen. „Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer“. Scientific Reports 15, Nr. 1 (17.02.2025). https://doi.org/10.1038/s41598-025-87510-w.
Der volle Inhalt der QuelleAchuthan, Krishnashree, Sasangan Ramanathan, Sethuraman Srinivas und Raghu Raman. „Advancing cybersecurity and privacy with artificial intelligence: current trends and future research directions“. Frontiers in Big Data 7 (05.12.2024). https://doi.org/10.3389/fdata.2024.1497535.
Der volle Inhalt der QuelleMustafa, Ahmad, Saja Nakhleh, Rama Irsheidat und Raneem Alruosan. „Interpreting Arabic Transformer Models: A Study on XAI Interpretability for Quranic Semantic Search Models“. Jordanian Journal of Computers and Information Technology, 2024, 1. http://dx.doi.org/10.5455/jjcit.71-1704878720.
Der volle Inhalt der QuelleBlack, Elizabeth, Martim Brandão, Oana Cocarascu, Bart De Keijzer, Yali Du, Derek Long, Michael Luck et al. „Reasoning and interaction for social artificial intelligence“. AI Communications, 12.09.2022, 1–17. http://dx.doi.org/10.3233/aic-220133.
Der volle Inhalt der QuelleSilva, Vivian, Siegfried Handschuh und André Freitas. „Recognizing and Justifying Text Entailment Through Distributional Navigation on Definition Graphs“. Proceedings of the AAAI Conference on Artificial Intelligence 32, Nr. 1 (26.04.2018). http://dx.doi.org/10.1609/aaai.v32i1.11914.
Der volle Inhalt der Quelle