Auswahl der wissenschaftlichen Literatur zum Thema „Selfish DNA element“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Selfish DNA element" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Selfish DNA element"

1

Milner, David S., Jeremy G. Wideman, Courtney W. Stairs, Cory D. Dunn, and Thomas A. Richards. "A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist." PLOS Biology 19, no. 4 (2021): e3001126. http://dx.doi.org/10.1371/journal.pbio.3001126.

Der volle Inhalt der Quelle
Annotation:
The overarching trend in mitochondrial genome evolution is functional streamlining coupled with gene loss. Therefore, gene acquisition by mitochondria is considered to be exceedingly rare. Selfish elements in the form of self-splicing introns occur in many organellar genomes, but the wider diversity of selfish elements, and how they persist in the DNA of organelles, has not been explored. In the mitochondrial genome of a marine heterotrophic katablepharid protist, we identify a functional type II restriction modification (RM) system originating from a horizontal gene transfer (HGT) event invol
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fullmer, Matthew S., Matthew Ouellette, Artemis S. Louyakis, R. Thane Papke, and Johann Peter Gogarten. "The Patchy Distribution of Restriction–Modification System Genes and the Conservation of Orphan Methyltransferases in Halobacteria." Genes 10, no. 3 (2019): 233. http://dx.doi.org/10.3390/genes10030233.

Der volle Inhalt der Quelle
Annotation:
Restriction–modification (RM) systems in bacteria are implicated in multiple biological roles ranging from defense against parasitic genetic elements, to selfish addiction cassettes, and barriers to gene transfer and lineage homogenization. In bacteria, DNA-methylation without cognate restriction also plays important roles in DNA replication, mismatch repair, protein expression, and in biasing DNA uptake. Little is known about archaeal RM systems and DNA methylation. To elucidate further understanding for the role of RM systems and DNA methylation in Archaea, we undertook a survey of the prese
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ma, Chien-Hui, Deepanshu Kumar, Makkuni Jayaram, Santanu K. Ghosh, and Vishwanath R. Iyer. "The selfish yeast plasmid exploits a SWI/SNF-type chromatin remodeling complex for hitchhiking on chromosomes and ensuring high-fidelity propagation." PLOS Genetics 19, no. 10 (2023): e1010986. http://dx.doi.org/10.1371/journal.pgen.1010986.

Der volle Inhalt der Quelle
Annotation:
Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tet
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Futcher, B., E. Reid, and D. A. Hickey. "Maintenance of the 2 micron circle plasmid of Saccharomyces cerevisiae by sexual transmission: an example of a selfish DNA." Genetics 118, no. 3 (1988): 411–15. http://dx.doi.org/10.1093/genetics/118.3.411.

Der volle Inhalt der Quelle
Annotation:
Abstract Many eukaryotic mobile elements have been identified, but few have any obvious function. This has led to the proposal that many such elements may be parasitic DNA. We have used the 2 micron circle plasmid of Saccharomyces cerevisiae as a model system to investigate the maintenance of a cryptic genetic element. We find that under certain conditions this plasmid can spread through experimental populations despite demonstrable selection against it. This spread is dependent upon outbreeding, suggesting that cell to cell transmission of the plasmid during the yeast sexual cycle can counter
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sau, Soumitra, Michael N. Conrad, Chih-Ying Lee, David B. Kaback, Michael E. Dresser, and Makkuni Jayaram. "A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation." Journal of Cell Biology 205, no. 5 (2014): 643–61. http://dx.doi.org/10.1083/jcb.201312002.

Der volle Inhalt der Quelle
Annotation:
The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sullins, Jennifer A., Anna L. Coleman-Hulbert, Alexandra Gallegos, Dana K. Howe, Dee R. Denver, and Suzanne Estes. "Complex Transmission Patterns and Age-Related Dynamics of a Selfish mtDNA Deletion." Integrative and Comparative Biology 59, no. 4 (2019): 983–93. http://dx.doi.org/10.1093/icb/icz128.

Der volle Inhalt der Quelle
Annotation:
Abstract Despite wide-ranging implications of selfish mitochondrial DNA (mtDNA) elements for human disease and topics in evolutionary biology (e.g., speciation), the forces controlling their formation, age-related accumulation, and offspring transmission remain largely unknown. Selfish mtDNA poses a significant challenge to genome integrity, mitochondrial function, and organismal fitness. For instance, numerous human diseases are associated with mtDNA mutations; however, few genetic systems can simultaneously represent pathogenic mitochondrial genome evolution and inheritance. The nematode Cae
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Torres-Padilla, Maria-Elena. "On transposons and totipotency." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1795 (2020): 20190339. http://dx.doi.org/10.1098/rstb.2019.0339.

Der volle Inhalt der Quelle
Annotation:
Our perception of the role of the previously considered ‘selfish’ or ‘junk’ DNA has been dramatically altered in the past 20 years or so. A large proportion of this non-coding part of mammalian genomes is repetitive in nature, classified as either satellites or transposons. While repetitive elements can be termed selfish in terms of their amplification, such events have surely been co-opted by the host, suggesting by itself a likely altruistic function for the organism at the subject of such natural selection. Indeed numerous examples of transposons regulating the functional output of the host
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Oberhofer, Georg, Tobin Ivy, and Bruce A. Hay. "Gene drive and resilience through renewal with next generation Cleave and Rescue selfish genetic elements." Proceedings of the National Academy of Sciences 117, no. 16 (2020): 9013–21. http://dx.doi.org/10.1073/pnas.1921698117.

Der volle Inhalt der Quelle
Annotation:
Gene drive-based strategies for modifying populations face the problem that genes encoding cargo and the drive mechanism are subject to separation, mutational inactivation, and loss of efficacy. Resilience, an ability to respond to these eventualities in ways that restore population modification with functional genes, is needed for long-term success. Here, we show that resilience can be achieved through cycles of population modification with “Cleave and Rescue” (ClvR) selfish genetic elements. ClvR comprises a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions o
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ma, Chien-Hui, Bo-Yu Su, Anna Maciaszek, Hsiu-Fang Fan, Piotr Guga, and Makkuni Jayaram. "A Flp-SUMO hybrid recombinase reveals multi-layered copy number control of a selfish DNA element through post-translational modification." PLOS Genetics 15, no. 6 (2019): e1008193. http://dx.doi.org/10.1371/journal.pgen.1008193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Petraccioli, Agnese, Nicola Maio, Rosa Carotenuto, Gaetano Odierna, and Fabio Maria Guarino. "The Satellite DNA PcH-Sat, Isolated and Characterized in the Limpet Patella caerulea (Mollusca, Gastropoda), Suggests the Origin from a Nin-SINE Transposable Element." Genes 15, no. 5 (2024): 541. http://dx.doi.org/10.3390/genes15050541.

Der volle Inhalt der Quelle
Annotation:
Satellite DNA (sat-DNA) was previously described as junk and selfish DNA in the cellular economy, without a clear functional role. However, during the last two decades, evidence has been accumulated about the roles of sat-DNA in different cellular functions and its probable involvement in tumorigenesis and adaptation to environmental changes. In molluscs, studies on sat-DNAs have been performed mainly on bivalve species, especially those of economic interest. Conversely, in Gastropoda (which includes about 80% of the currently described molluscs species), studies on sat-DNA have been largely n
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Selfish DNA element"

1

Girard, Fabien. "Tethering of molecular parasites on inactive chromatin in eukaryote nucleus." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS661.

Der volle Inhalt der Quelle
Annotation:
Les plasmides naturels sont courants chez les procaryotes, mais peu ont été documentés chez les eucaryotes. Le plasmide naturel 2µ présent dans la levure bourgeonnante Saccharomyces cerevisiae est l'un des mieux caractérisés. Cet élément génétique très stable coexiste avec son hôte depuis des millions d'années, ségrégeant efficacement à chaque division cellulaire par un mécanisme qui reste mal compris. En utilisant la ligature de proximité (Hi-C, Micro-C) pour cartographier les contacts entre le plasmide 2µ et les chromosomes de levure dans des dizaines de conditions biologiques différentes, n
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Selfish DNA element"

1

Brookfield, J. F. Y. "| Transposable elements as selfish DNA." In Mobile Genetic Elements. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780199634057.003.0006.

Der volle Inhalt der Quelle
Annotation:
Abstract Biologists seek functional explanations for the attributes of organisms. Such explanations show the advantage that the attribute gives to the organism. Any attribute, including components of the genome, can potentially be explained in this way. The belief that such functional explanations are appropriate rests on the tenet of the Neo-Darwinian evolutionary theory that states that the only systematic mechanism by which genes or other DNA sequences can spread through populations is through differences in the fitnesses of their carriers. Transposable elements, however, increase in number either directly or indirectly during transposition, and thus could potentially spread without increasing the fitness of their hosts. This non-Darwinian behaviour illegitimizes functional explanations and requires us to seek causal explanations for the presence of transposable elements in genomes, incorporating both their own molecular properties and their effects on their hosts. One class of explanations are those in which the effects of transposable elements on their hosts are negative. In other words, they are ‘selfish DNAs’ (1, 2). In this chapter, I will discuss some of the ideas and experiments indicating the selfishness or otherwise of transposable genetic elements. For details of the structures of various classes of transposable elements and the mechanisms of their transposition, the reader should consult other chapters in this volume. I will concentrate mainly on the elements in sexually reproducing diploid eukaryotes, for which the data sets of the distributions and frequencies of elements are often more complete, and for which the Neo-Darwinian population genetics synthesis provides a framework for considerations of transposable element evolution. I will strive, however, to highlight the ways in which the evolutionary process affecting prokaryotic transposable elements shows important similarities to and differences from the diploid paradigm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

King, David G., Edward N. Trifonov, and Yechezkel Kashi. "Tuning Knobs in the Genome: Evolution of Simple Sequence Repeats by Indirect Selection." In The Implicit Genome. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195172706.003.0005.

Der volle Inhalt der Quelle
Annotation:
Abstract Simple sequence repeats (SSRs) are highly mutable sites that are distributed throughout eukaryotic genomes. They often occur as functional elements within genes and gene-regulatory regions where mutational changes in repeat number provide extensive variation with minimal genetic load. Implicit in this mutability is the potential for rapid and reversible adjustment of quantitative traits. Although these repetitive elements have been regarded as “junk” or “selfish” DNA, their unique properties are consistent with indirect selection for a “tuning knob” function that facilitates efficient evolutionary adaptation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Silvertown, Jonathan. "Naked selfishness." In Selfish Genes to Social Beings. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198876397.003.0015.

Der volle Inhalt der Quelle
Annotation:
Abstract Gene selfishness is not in itself a barrier to cooperation; in fact, it is the reverse. We have seen repeatedly how self-interested cooperation evolves because of the benefits it brings to team players. But cooperation does not just produce benefits; it also creates opportunities for cheats. Cheating reaches its most extreme in the genomic parasites that exploit the replication machinery of the cell. Viruses are a familiar example, and they are arguably nature’s oldest professional cheats. Another class of genomic parasites is the transposable elements (TEs), which comprise over half our DNA. The variety of TEs is enormous and their nefarious strategies various—some are even parasitic within other TEs. Eukaryote genomes are not alone in containing TEs; bacterial chromosomes also have them, but in bacteria they are usually deleted and not allowed by natural selection to accumulate. The exceptions are TEs that team up with genes that are of positive advantage to their bacterial host, for example in conferring antibiotic resistance. In contrast to bacteria, it is clear from the sheer numbers of TEs that accumulate in eukaryotes that deletion is not so ready an option. The reason boils down to the difference in generation time between bacteria (c. 20 minutes) and most eukaryotes (25 years in humans). Short generation time and huge population size in bacteria sharpen the blade of natural selection, but the reverse blunts its ability to remove TEs from eukaryote genomes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sætre, Glenn-Peter, and Mark Ravinet. "Genomes and the origin of genetic variation." In Evolutionary Genetics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198830917.003.0002.

Der volle Inhalt der Quelle
Annotation:
Error and chance events, random mutations, are necessary prerequisites for evolution to happen. In a perfect world with no mutations there would be no evolution because no genetic variation would be generated that natural selection or genetic drift could work upon. This chapter first reviews how DNA is organized into genomes and genes in bacteria, archaea, and, in greater detail, eukaryotes. A surprising finding is that only a small fraction of the eukaryote genome consists of coding sequence. Evolutionary processes that can explain the presence of large amounts of noncoding DNA and the repetitive structure of the genome are reviewed, with emphasis on the roles that selfish genetic elements and unequal crossing over play. The chapter further explores the mechanisms that cause mutation and how new genes and protein functions originate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Elliott, David, and Michael Ladomery. "RNA editing." In Molecular Biology of RNA. Oxford University Press, 2015. http://dx.doi.org/10.1093/hesc/9780199671397.003.0013.

Der volle Inhalt der Quelle
Annotation:
This chapter discusses how open reading frames (ORFs) of some RNAs can be altered after transcription by RNA editing. The chapter highlights the important role RNA editing plays in keeping selfish DNA elements in the genome in check. It also mentions the significant role RNA editing plays in enabling tRNAs to translate mRNAs efficiently, which is a process that is conserved between bacteria and eukaryotes. The chapter explains how RNA editing changes the sequence of RNAs once they have already been transcribed. It analyses RNA editing through base modification that changes the chemical identity of nucleotides already present within the transcript.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Selfish DNA element"

1

Palencsárné Kasza, Marianna. "Digitális átállás – Minőség – lehetőségek az EQAVET terén." In Networkshop. HUNGARNET Egyesület, 2022. http://dx.doi.org/10.31915/nws.2022.11.

Der volle Inhalt der Quelle
Annotation:
A 21. század új kihívása, hogy az ipar 4.0 követelményeihez igazított szakképzési rendszert kell kialakítani. A magyar kormány által elfogadott Szakképzés 4.0 stratégia a gazdaság változó kihívásaira reagál, pontos képet ad a helyzetről és felvázolja a tervezett beavatkozásokat. A szakképzés minőségének javítása érdekében valamennyi szakképző intézményben minőségirányítási rendszert vezetnek be, amelynek elemei kompatibilisek lesznek az EQAVET rendszerrel, és azonos indikatív jellemzőket használnak, így az intézmények tevékenysége és eredményei európai szinten összehasonlíthatóvá válnak. Az EQ
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!