Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Self-assembly in water.

Zeitschriftenartikel zum Thema „Self-assembly in water“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Self-assembly in water" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mincheng Zhong, Mincheng Zhong, Ziqiang Wang Ziqiang Wang und and Yinmei Li and Yinmei Li. „Laser-accelerated self-assembly of colloidal particles at the water–air interface“. Chinese Optics Letters 15, Nr. 5 (2017): 051401–51405. http://dx.doi.org/10.3788/col201715.051401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rogalska, E., M. Rogalski, T. Gulik-Krzywicki, A. Gulik und C. Chipot. „Self-assembly of chlorophenols in water“. Proceedings of the National Academy of Sciences 96, Nr. 12 (08.06.1999): 6577–80. http://dx.doi.org/10.1073/pnas.96.12.6577.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Roger, Kevin, Marianne Liebi, Jimmy Heimdal, Quoc Dat Pham und Emma Sparr. „Controlling water evaporation through self-assembly“. Proceedings of the National Academy of Sciences 113, Nr. 37 (29.08.2016): 10275–80. http://dx.doi.org/10.1073/pnas.1604134113.

Der volle Inhalt der Quelle
Annotation:
Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

SMIT, B., P. A. J. HILBERS und K. ESSELINK. „COMPUTER SIMULATIONS OF SURFACTANT SELF ASSEMBLY“. International Journal of Modern Physics C 04, Nr. 02 (April 1993): 393–400. http://dx.doi.org/10.1142/s0129183193000422.

Der volle Inhalt der Quelle
Annotation:
A simple oil/water/surfactant model is used to study the self-assembly of surfactants. The model contains only the most obvious elements: oil and water do not mix, and a surfactant is an amphiphilic molecule, i.e. one side of the molecule likes oil but dislikes water, the other side likes water but dislikes oil. Computer simulations on large oil/water/surfactant systems were performed on a network of 400 transputers using a parallel molecular dynamics algorithm. The simulations yield a complete micellar size distribution function. Furthermore, we observe (equilibrium) dynamical processes such as the entering of single surfactants into micelles, single surfactants leaving micelles, the fusion of two micelles, and the slow breakdown of a micelle.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kancharla, Samhitha, Aditya Choudhary, Ryan T. Davis, Dengpan Dong, Dmitry Bedrov, Marina Tsianou und Paschalis Alexandridis. „GenX in water: Interactions and self-assembly“. Journal of Hazardous Materials 428 (April 2022): 128137. http://dx.doi.org/10.1016/j.jhazmat.2021.128137.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Janlad, M., P. Boonnoy und J. Wong-ekkabut. „Self-Assembly of Aldehyde Lipids in Water“. IOP Conference Series: Materials Science and Engineering 526 (08.08.2019): 012005. http://dx.doi.org/10.1088/1757-899x/526/1/012005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rudolph, Alan S., Jeffrey M. Calvert, Mary E. Ayers und Joel M. Schnur. „Water-free self-assembly of phospholipid tubules“. Journal of the American Chemical Society 111, Nr. 22 (Oktober 1989): 8516–17. http://dx.doi.org/10.1021/ja00204a033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lauceri, Rosaria, Massimo De Napoli, Angela Mammana, Sara Nardis, Andrea Romeo und Roberto Purrello. „Hierarchical self-assembly of water-soluble porphyrins“. Synthetic Metals 147, Nr. 1-3 (Dezember 2004): 49–55. http://dx.doi.org/10.1016/j.synthmet.2004.05.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hato, Masakatsu, Hiroyuki Minamikawa, Kaoru Tamada, Teruhiko Baba und Yoshikazu Tanabe. „Self-assembly of synthetic glycolipid/water systems“. Advances in Colloid and Interface Science 80, Nr. 3 (April 1999): 233–70. http://dx.doi.org/10.1016/s0001-8686(98)00085-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Odeh, Fadwa, Abeer Al-Bawab und Yuzhuo Li. „Self-Assembly Behavior of Benzotriazole in Water“. Journal of Dispersion Science and Technology 31, Nr. 2 (21.01.2010): 162–68. http://dx.doi.org/10.1080/01932690903110186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Janlad, Minchakarn, Phansiri Boonnoy und Jirasak Wong-Ekkabut. „Self-Assembly of Lipid Peroxidation in Water“. Biophysical Journal 118, Nr. 3 (Februar 2020): 89a. http://dx.doi.org/10.1016/j.bpj.2019.11.651.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Percástegui, Edmundo G., Jesús Mosquera, Tanya K. Ronson, Alex J. Plajer, Marion Kieffer und Jonathan R. Nitschke. „Waterproof architectures through subcomponent self-assembly“. Chemical Science 10, Nr. 7 (2019): 2006–18. http://dx.doi.org/10.1039/c8sc05085f.

Der volle Inhalt der Quelle
Annotation:
Construction of metal–organic containers that are soluble and stable in water can be challenging – we present diverse strategies that allow the synthesis of kinetically robust water-soluble architectures via subcomponent self-assembly.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Wang, Cuixia, Chao Zhang, Jin-Wu Jiang, Ning Wei, Harold S. Park und Timon Rabczuk. „Self-assembly of water molecules using graphene nanoresonators“. RSC Advances 6, Nr. 112 (2016): 110466–70. http://dx.doi.org/10.1039/c6ra22475j.

Der volle Inhalt der Quelle
Annotation:
Inspired by macroscale self-assembly using the higher order resonant modes of Chladni plates, we use classical molecular dynamics to investigate the self-assembly of water molecules using graphene nanoresonators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wen, Chenyu, Jie Ren, Jun Xia und Tao Gu. „Self-Assembly Oil–Water Perfusion in Electrowetting Displays“. Journal of Display Technology 9, Nr. 2 (Februar 2013): 122–27. http://dx.doi.org/10.1109/jdt.2012.2236641.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

van Rijn, Patrick, Dainius Janeliunas, Aurélie M. Brizard, Marc C. A. Stuart, Ger J. M. Koper, Rienk Eelkema und Jan H. van Esch. „Self-assembly behaviour of conjugated terthiophenesurfactants in water“. New J. Chem. 35, Nr. 3 (2011): 558–67. http://dx.doi.org/10.1039/c0nj00760a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Chang, Shery L. Y., Philipp Reineck, Dewight Williams, Gary Bryant, George Opletal, Samir A. El-Demrdash, Po-Lin Chiu, Eiji Ōsawa, Amanda S. Barnard und Christian Dwyer. „Dynamic self-assembly of detonation nanodiamond in water“. Nanoscale 12, Nr. 9 (2020): 5363–67. http://dx.doi.org/10.1039/c9nr08984e.

Der volle Inhalt der Quelle
Annotation:
We use direct imaging and dynamic light scattering to reveal the previously unknown dynamic self-assembly of detonation nanodiamond dispersions in water which have been purified without additional surface modification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Yusa, Shin-ichi. „Self-Assembly of Cholesterol-Containing Water-Soluble Polymers“. International Journal of Polymer Science 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/609767.

Der volle Inhalt der Quelle
Annotation:
Self-assembly of amphiphilic polymers containing cholesteryl groups has proved to be attractive in the field of nanotechnology research. Some cholesterol derivatives are known to form ordered structures which indicate thermotropic and lyotropic liquid-crystalline, monolayers, multilayers, micelles, and liposomes. This paper involves the synthesis and characterization of various kinds of amphiphilic polymers bearing cholesteryl moieties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Mal, Prasenjit, und Jonathan R. Nitschke. „Sequential self-assembly of iron structures in water“. Chemical Communications 46, Nr. 14 (2010): 2417. http://dx.doi.org/10.1039/b920745g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Nevo, Iftach, Sergey Kapishnikov, Atalia Birman, Mingdong Dong, Sidney R. Cohen, Kristian Kjaer, Flemming Besenbacher, Henrik Stapelfeldt, Tamar Seideman und Leslie Leiserowitz. „Laser-induced aligned self-assembly on water surfaces“. Journal of Chemical Physics 130, Nr. 14 (14.04.2009): 144704. http://dx.doi.org/10.1063/1.3108540.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Jiao, Tianyu, Guangcheng Wu, Yang Zhang, Libo Shen, Ye Lei, Cai‐Yun Wang, Albert C. Fahrenbach und Hao Li. „Self‐Assembly in Water with N‐Substituted Imines“. Angewandte Chemie International Edition 59, Nr. 42 (03.06.2020): 18350–67. http://dx.doi.org/10.1002/anie.201910739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Murphy, Connor, Yunqi Cao, Nelson Sepúlveda und Wei Li. „Quick self-assembly of bio-inspired multi-dimensional well-ordered structures induced by ultrasonic wave energy“. PLOS ONE 16, Nr. 2 (24.02.2021): e0246453. http://dx.doi.org/10.1371/journal.pone.0246453.

Der volle Inhalt der Quelle
Annotation:
Bottom-up self-assembly of components, inspired by hierarchically self-regulating aggregation of small subunits observed in nature, provides a strategy for constructing two- or three-dimensional intriguing biomimetic materials via the spontaneous combination of discrete building blocks. Herein, we report the methods of ultrasonic wave energy-assisted, fast, two- and three-dimensional mesoscale well-ordered self-assembly of microfabricated building blocks (100 μm in size). Mechanical vibration energy-driven self-assembly of microplatelets at the water-air interface of inverted water droplets is demonstrated, and the real-time formation process of the patterned structure is dynamically explored. 40 kHz ultrasonic wave is transferred into microplatelets suspended in a water environment to drive the self-assembly of predesigned well-ordered structures. Two-dimensional self-assembly of microplatelets inside the water phase with a large patterned area is achieved. Stable three-dimensional multi-layered self-assembled structures are quickly formed at the air-water interface. These demonstrations aim to open distinctive and effective ways for new two-dimensional surface coating technology with autonomous organization strategy, and three-dimensional complex hierarchical architectures built by the bottom-up method and commonly found in nature (such as nacre, bone or enamel, etc.).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Domínguez, Eva, und Antonio Heredia. „Self-Assembly in Plant Barrier Biopolymers“. Zeitschrift für Naturforschung C 54, Nr. 1-2 (01.02.1999): 141–43. http://dx.doi.org/10.1515/znc-1999-1-222.

Der volle Inhalt der Quelle
Annotation:
A new procedure is given to isolate the components that constitute the translucent lines present in some layered plant cuticles. These electron-translucent lines are mainly composed of fatty acids and n-alkanes. This waxy material is capable to form molecular bilayers with a constant thickness of approximately 5 nm. This special arrangement have a strong contribution in water transport across the cuticle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Murphy, Thomas, Robert Hayes, Silvia Imberti, Gregory G. Warr und Rob Atkin. „Ionic liquid nanostructure enables alcohol self assembly“. Physical Chemistry Chemical Physics 18, Nr. 18 (2016): 12797–809. http://dx.doi.org/10.1039/c6cp01739h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Astanov, Salih, Guzal Kasimova, Akbar Abrorov und Bakhtigul Fayziyeva. „Self-assembly of tartrazine molecules in water- dimethylsulphaxide solution“. IOP Conference Series: Earth and Environmental Science 848, Nr. 1 (01.09.2021): 012095. http://dx.doi.org/10.1088/1755-1315/848/1/012095.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Vladkova, Radka. „Chlorophyll a Self-assembly in Polar Solvent-Water Mixtures †“. Photochemistry and Photobiology 71, Nr. 1 (01.05.2007): 71–83. http://dx.doi.org/10.1562/0031-8655(2000)0710071casaip2.0.co2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Vladkova, Radka. „Chlorophyll a Self-assembly in Polar Solvent–Water Mixtures†“. Photochemistry and Photobiology 71, Nr. 1 (2000): 71. http://dx.doi.org/10.1562/0031-8655(2000)071<0071:casaip>2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Helttunen, Kaisa, und Patrick Shahgaldian. „Self-assembly of amphiphilic calixarenes and resorcinarenes in water“. New Journal of Chemistry 34, Nr. 12 (2010): 2704. http://dx.doi.org/10.1039/c0nj00123f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kimura, Shunsaku, Do-Hyung Kim, Junji Sugiyama und Yukio Imanishi. „Vesicular Self-Assembly of a Helical Peptide in Water“. Langmuir 15, Nr. 13 (Juni 1999): 4461–63. http://dx.doi.org/10.1021/la981673m.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Jiang, Feng, und You-Lo Hsieh. „Holocellulose Nanocrystals: Amphiphilicity, Oil/Water Emulsion, and Self-Assembly“. Biomacromolecules 16, Nr. 4 (20.03.2015): 1433–41. http://dx.doi.org/10.1021/acs.biomac.5b00240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Aguiló, Elisabet, Artur J. Moro, Raquel Gavara, Ignacio Alfonso, Yolanda Pérez, Francesco Zaccaria, Célia Fonseca Guerra et al. „Reversible Self-Assembly of Water-Soluble Gold(I) Complexes“. Inorganic Chemistry 57, Nr. 3 (28.10.2017): 1017–28. http://dx.doi.org/10.1021/acs.inorgchem.7b02343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Pérez-Hernández, Natalia, Diego Fort, Cirilo Pérez und Julio D. Martín. „Water-Induced Molecular Self-Assembly of Hollow Tubular Crystals“. Crystal Growth & Design 11, Nr. 4 (06.04.2011): 1054–61. http://dx.doi.org/10.1021/cg101227u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Peuronen, Anssi, Esa Lehtimäki und Manu Lahtinen. „Self-Assembly of Water-Mediated Supramolecular Cationic Archimedean Solids“. Crystal Growth & Design 13, Nr. 10 (19.09.2013): 4615–22. http://dx.doi.org/10.1021/cg401246n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Hou, Qiao, Chaorui Xue, Ning Li, Huiqi Wang, Qing Chang, Hantao Liu, Jinlong Yang und Shengliang Hu. „Self-assembly carbon dots for powerful solar water evaporation“. Carbon 149 (August 2019): 556–63. http://dx.doi.org/10.1016/j.carbon.2019.04.083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Bordin, José Rafael, Leandro B. Krott und Marcia C. Barbosa. „Self-Assembly and Water-like Anomalies in Janus Nanoparticles“. Langmuir 31, Nr. 31 (29.07.2015): 8577–82. http://dx.doi.org/10.1021/acs.langmuir.5b01555.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Grawe, Thomas, Thomas Schrader, Reza Zadmard und Arno Kraft. „Self-Assembly of Ball-Shaped Molecular Complexes in Water“. Journal of Organic Chemistry 67, Nr. 11 (Mai 2002): 3755–63. http://dx.doi.org/10.1021/jo025513y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Kaneko, Daisuke, Ulf Olsson und Kazutami Sakamoto. „Self-Assembly in SomeN-Lauroyl-l-glutamate/Water Systems“. Langmuir 18, Nr. 12 (Juni 2002): 4699–703. http://dx.doi.org/10.1021/la0117653.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hamano, Ryo, und Hiroaki Suzuki. „TEMPLATED SELF-ASSEMBLY OF MICROCOMPONENTS USING WATER-OIL INTERFACE“. Proceedings of the Symposium on Micro-Nano Science and Technology 2019.10 (2019): 19pm5PN348. http://dx.doi.org/10.1299/jsmemnm.2019.10.19pm5pn348.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Wang, Yiguang, Ruiqi Wang, Xiaoyan Lu, Wanliang Lu, Chunling Zhang und Wei Liang. „Pegylated Phospholipids-Based Self-Assembly with Water-Soluble Drugs“. Pharmaceutical Research 27, Nr. 2 (22.12.2009): 361–70. http://dx.doi.org/10.1007/s11095-009-0029-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sun, Yan, Chao-Guo Yan, Yong Yao, Ying Han und Ming Shen. „Self-Assembly and Metallization of Resorcinarene Microtubes in Water“. Advanced Functional Materials 18, Nr. 24 (22.12.2008): 3981–90. http://dx.doi.org/10.1002/adfm.200800843.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hato, Masakatsu, Hiroyuki Minamikawa, Kaoru Tamada, Teruhiko Baba und Yoshikazu Tanabe. „ChemInform Abstract: Self-Assembly of Synthetic Glycolipid/Water Systems“. ChemInform 30, Nr. 35 (13.06.2010): no. http://dx.doi.org/10.1002/chin.199935322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Duan, Hongwei, Dayang Wang, Dirk G. Kurth und Helmuth Möhwald. „Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces“. Angewandte Chemie International Edition 43, Nr. 42 (20.10.2004): 5639–42. http://dx.doi.org/10.1002/anie.200460920.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Karlsson, S., R. Friman, B. Lindström und S. Backlund. „Self-Assembly in the System Decanoic Acid–Butylamine–Water“. Journal of Colloid and Interface Science 243, Nr. 1 (November 2001): 241–47. http://dx.doi.org/10.1006/jcis.2001.7836.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Corbellini, Francesca, Ronald M. A. Knegtel, Peter D. J. Grootenhuis, Mercedes Crego-Calama und David N. Reinhoudt. „Water-Soluble Molecular Capsules: Self-Assembly and Binding Properties“. Chemistry - A European Journal 11, Nr. 1 (Januar 2005): 298–307. http://dx.doi.org/10.1002/chem.200400849.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Duan, Hongwei, Dayang Wang, Dirk G. Kurth und Helmuth Möhwald. „Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces“. Angewandte Chemie 116, Nr. 42 (20.10.2004): 5757–60. http://dx.doi.org/10.1002/ange.200460920.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Ranjan, Rahul, Pasenjit Das, Kamla Rawat, V. K. Aswal, J. Kohlbrecher und H. B. Bohidar. „Self-assembly and gelation of TX-100 in water“. Colloid and Polymer Science 295, Nr. 5 (04.04.2017): 903–9. http://dx.doi.org/10.1007/s00396-017-4078-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gudkovskikh, Sergey V., und Mikhail V. Kirov. „Cubic water clusters as building blocks for self-assembly“. Chemical Physics 572 (August 2023): 111947. http://dx.doi.org/10.1016/j.chemphys.2023.111947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Brittain, Tyler J., Samuel D. Fontaine, Coleman Swaim, Daniel R. Marzolf und Oleksandr Kokhan. „Control of Protein Self-Assembly with Water-Soluble Porphyrins“. Biophysical Journal 116, Nr. 3 (Februar 2019): 481a. http://dx.doi.org/10.1016/j.bpj.2018.11.2595.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Bera, Santu, Sibaprasad Maity und Debasish Haldar. „Assembly of encapsulated water in hybrid bisamides: helical and zigzag water chains“. CrystEngComm 17, Nr. 7 (2015): 1569–75. http://dx.doi.org/10.1039/c4ce01950d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Ji, Tan, Lei Xia, Wei Zheng, Guang-Qiang Yin, Tao Yue, Xiaopeng Li, Weian Zhang, Xiao-Li Zhao und Hai-Bo Yang. „Porphyrin-functionalized coordination star polymers and their potential applications in photodynamic therapy“. Polymer Chemistry 10, Nr. 45 (2019): 6116–21. http://dx.doi.org/10.1039/c9py01391a.

Der volle Inhalt der Quelle
Annotation:
We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Carson, George A., und Steve Granick. „Self-assembly of octadecyltrichlorosilane monolayers on mica“. Journal of Materials Research 5, Nr. 8 (August 1990): 1745–51. http://dx.doi.org/10.1557/jmr.1990.1745.

Der volle Inhalt der Quelle
Annotation:
A method is described to deposit a securely attached, self-assembled monolayer of octadecyltrichlorosilane (OTS) on the surface of freshly cleaved muscovite mica. Comparison of the infrared methylene spectra with those of closely packed Langmuir-Blodgett films implies that the surface coverage of the OTS films was a fraction 0.8–0.9 that of films formed by Langmuir-Blodgett (LB) methods. However, LB monolayers are less securely attached to the substrate. The contact angle of water on these self-assembled monolayers remained over 100° for over 24 h and it suffered no noticeable degradation after prolonged reflux in cyclohexane. The method to form an OTS monolayer on mica involves three steps; first, ion exchange of the native K+ ions of cleaved mica for H+ ions; second, control of the quantity of resulting water on the mica surface; third, adsorption and surface polymerization of octadecyltrichlorosilane (OTS) by self-assembly from dilute cyclohexane solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie