Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Seismic ambient noise“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Seismic ambient noise" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Seismic ambient noise"
Krebes, Edward S. „Seismic Ambient Noise“. Journal of the Acoustical Society of America 146, Nr. 1 (Juli 2019): 532–33. http://dx.doi.org/10.1121/1.5118247.
Der volle Inhalt der QuelleErmert, Laura, Jonas Igel, Korbinian Sager, Eléonore Stutzmann, Tarje Nissen-Meyer und Andreas Fichtner. „Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion“. Solid Earth 11, Nr. 4 (28.08.2020): 1597–615. http://dx.doi.org/10.5194/se-11-1597-2020.
Der volle Inhalt der QuelleHong, Tae-Kyung, Jeongin Lee, Giha Lee, Junhyung Lee und Seongjun Park. „Correlation between Ambient Seismic Noises and Economic Growth“. Seismological Research Letters 91, Nr. 4 (03.06.2020): 2343–54. http://dx.doi.org/10.1785/0220190369.
Der volle Inhalt der QuelleDraganov, Deyan, Xander Campman, Jan Thorbecke, Arie Verdel und Kees Wapenaar. „Reflection images from ambient seismic noise“. GEOPHYSICS 74, Nr. 5 (September 2009): A63—A67. http://dx.doi.org/10.1190/1.3193529.
Der volle Inhalt der QuelleSens-Schönfelder, Christoph. „Synchronizing seismic networks with ambient noise“. Geophysical Journal International 174, Nr. 3 (September 2008): 966–70. http://dx.doi.org/10.1111/j.1365-246x.2008.03842.x.
Der volle Inhalt der Quellede Ridder, Sjoerd A. L., und Biondo L. Biondi. „Ambient seismic noise tomography at Ekofisk“. GEOPHYSICS 80, Nr. 6 (November 2015): B167—B176. http://dx.doi.org/10.1190/geo2014-0558.1.
Der volle Inhalt der QuelleLaske, Gabi. „Book Review of ‘Seismic Ambient Noise’“. Geophysical Journal International 221, Nr. 3 (03.03.2020): 1667–68. http://dx.doi.org/10.1093/gji/ggaa101.
Der volle Inhalt der QuelleShirzad, Taghi, und Zaher‐Hossein Shomali. „Extracting Stable Seismic Core Phases from Ambient Seismic Noise“. Bulletin of the Seismological Society of America 106, Nr. 1 (15.12.2015): 307–12. http://dx.doi.org/10.1785/0120150031.
Der volle Inhalt der QuelleVassallo, M., G. Festa und A. Bobbio. „Seismic Ambient Noise Analysis in Southern Italy“. Bulletin of the Seismological Society of America 102, Nr. 2 (29.03.2012): 574–86. http://dx.doi.org/10.1785/0120110018.
Der volle Inhalt der QuelleSaygin, Erdinc, und Brian L. N. Kennett. „Ambient seismic noise tomography of Australian continent“. Tectonophysics 481, Nr. 1-4 (Januar 2010): 116–25. http://dx.doi.org/10.1016/j.tecto.2008.11.013.
Der volle Inhalt der QuelleDissertationen zum Thema "Seismic ambient noise"
Arogundade, Simisola M. „Numerical modeling of ambient noise seismic interferometry“. Thesis, Michigan Technological University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10125274.
Der volle Inhalt der QuelleCO2 sequestration involves storing CO2 in a deep geological formation and may help to mitigate the increasing emission of carbon. To monitor the migration of injected fluid in the reservoir, seismic observations may be used to observe changes in reflection character. Conventional methods to image the subsurface, using active seismic measurements, with man-made sources, have been applied at a few test sites, and the use of passive measurements, with natural sources, has been considered as a probable cost-efficient method to monitor CO2 migration and leakage. This numerical modeling study examines the use of seismic interferometry to retrieve weak seismic reflections from background noise, a form of passive monitoring.
The factors that influence the quality of the retrieved reflections from interferometry include geophone interval, geophone depth, and effect of shallow noise sources, assuming we seek reflections from deep noise sources, representing either teleseismic events or local events as expected in a field of active injection. Using model data, geophone interval had no significant effect on the reflection quality, but buried geophones produce ghost reflections, suggesting that shallow geophones might be optimal. Shallow noise sources produce a destructive effect on the reflections from deeper noise sources and damage the resulting image.
Olivier, Gerrit. „Seismic imaging and monitoring in mines with ambient seismic noise correlations“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAU018/document.
Der volle Inhalt der QuelleThis work focus on using passive noise-based seismic methods to image and monitor the rock mass in underground mines. The main results show that it is possible to gain benefit from the diffuse ambient seismic field in mines to 1/ image the rock mass and 2/ monitor its mechanical property changes over time. This work opens a way to improve safety in deep underground mines
Allmark, Claire Lindsay. „Analysing the Earth's near surface using ambient seismic noise“. Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/29639.
Der volle Inhalt der QuelleNeale, Jennifer F. Ward. „An investigation into ocean wave sources of ambient seismic noise“. Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/412555/.
Der volle Inhalt der QuelleJonsdottir, Frida. „Estimation of Relative Seismic Velocity Changes Around Katla Volcano, Using Coda in Ambient Seismic Noise“. Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353619.
Der volle Inhalt der QuelleSeismiska vågor är vibrationer i jordytan som genereras av jordbävningar, explosioner eller andra processer som skakar jorden. Seismiska vågor färdas genom jordens lager och innehåller därför information om jordens inre struktur. Dessa vibrationer kan hämtas med ett känsligt instrument som kallas seismometer. Seismiska vågor färdas med en viss hastighet som beror på hur hård och tung berggrunden är. Förändringar av dessa egenskaper kan därför resultera i förändringar av hastigheten. Dessa förändringar kan orsakas av spänningsförändringar under marken, till exempel trycket i porer eller variationer i vikten ovanför marken, exempelvis från en glaciär. I denna uppsats studeras förändringar av seismiska vågors hastighet kring vulkanen Katla på Island under 7 månader, 2011. Katla är en av Islands mest aktiva vulkaner och är belägen under en glaciär, Mýrdalsjökull. Detta görs genom att använda omgivande seismiskt brus, som består av seismiska vågor. Bruset genereras av tryckvariationer i samband med havsvågor. Bruset analyseras med en korrelationsanalys som bland annat isolerar spridda vågor från detaljer i strukturen och variationer av dessa med tid kan användas til mätningar av hastighets förändringar. Resultaten tyder på förändringar i relativ seismik hastighet avstorleken 0.1% som varar i en till två månader. Hastigheten minskar i juli och över en tvåmånadersperiod från slutet av augusti till början av november, men ökar i augusti och från början av november till slutet av december. Dessa variationer kan ha orsakats av en kombination av förändringar i grundvattennivån under glaciären, förändringar i glaciärens vikt och magmatiska processer. Inga tydliga förändringar i samband med sekvenser av små jordbävningar som ägde rum i början av juli 2011 kunde observeras frånförändringar i relativ seismisk hastighet runt Katla.
Saygin, Erdinc, und erdinc saygin@anu edu au. „Seismic Receiver and Noise Correlation Based Studies in Australia“. The Australian National University. Research School of Earth Sciences, 2007. http://thesis.anu.edu.au./public/adt-ANU20091009.115242.
Der volle Inhalt der QuelleSadeghisorkhani, Hamzeh. „Analyses and Application of Ambient Seismic Noise in Sweden : Source, Interferometry, Tomography“. Doctoral thesis, Uppsala universitet, Geofysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-320169.
Der volle Inhalt der QuelleNicolson, Heather Johan. „Exploring the Earth's subsurface with virtual seismic sources and receivers“. Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5726.
Der volle Inhalt der QuelleSabey, Lindsay Erin. „Body and surface wave ambient noise seismic interferometry across the Salton Sea Geothermal Field, California“. Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/51185.
Der volle Inhalt der QuelleMaster of Science
Acarel, Diğdem [Verfasser]. „Characterization of the Crustal Velocity Field in Space and Time Using Ambient Seismic Noise / Digdem Acarel“. Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1071547720/34.
Der volle Inhalt der QuelleBücher zum Thema "Seismic ambient noise"
Nakata, Nori, Lucia Gualtieri und Andreas Fichtner, Hrsg. Seismic Ambient Noise. Cambridge University Press, 2019. http://dx.doi.org/10.1017/9781108264808.
Der volle Inhalt der QuelleSeismic Ambient Noise. Cambridge University Press, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Seismic ambient noise"
Campillo, Michel, Philippe Roux und Nikolai M. Shapiro. „Seismic, Ambient Noise Correlation“. In Encyclopedia of Solid Earth Geophysics, 1230–36. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_218.
Der volle Inhalt der QuelleCampillo, Michel, Philippe Roux und Nikolai M. Shapiro. „Seismic, Ambient Noise Correlation“. In Encyclopedia of Solid Earth Geophysics, 1–6. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10475-7_218-1.
Der volle Inhalt der QuelleCampillo, Michel, Philippe Roux und Nikolai M. Shapiro. „Seismic, Ambient Noise Correlation“. In Encyclopedia of Solid Earth Geophysics, 1557–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_218.
Der volle Inhalt der QuelleAbd el-aal, Abd el-aziz Khairy. „New Relationship Between Fundamental Site Frequency and Thickness of Soft Sediments from Seismic Ambient Noise“. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1883–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_544.
Der volle Inhalt der QuelleBezuidenhout, Lucien, Moctar Doucouré, Viera Wagener und Maarten J. de Wit. „Ambient Noise Tomography (Passive Seismic) to Image the Cape-Karoo Transition Near Jansenville, Eastern Cape“. In Origin and Evolution of the Cape Mountains and Karoo Basin, 27–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40859-0_3.
Der volle Inhalt der QuelleAl Yuncha, Z., F. Luzón, A. Posadas, J. Martín, G. Alguacil, J. Almendros und S. Sánchez. „The Use of Ambient Seismic Noise Measurements for the Estimation of Surface Soil Effects: The Motril City Case (Southern Spain)“. In Geodetic and Geophysical Effects Associated with Seismic and Volcanic Hazards, 1549–59. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7897-5_16.
Der volle Inhalt der QuelleWasowski, Janusz, Vincenzo Del Gaudio, Domenico Casarano, Piernicola Lollino und Sandro Muscillo. „Local Scale Seismic Landslide Susceptibility Assessment Based on Historic Earthquake Records Combined with Accelerometer Monitoring and Ambient Noise Data“. In Earthquake-Induced Landslides, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32238-9_2.
Der volle Inhalt der QuelleMellen, R. H., und D. G. Browning. „Infrasonic Attenuation and Ambient Noise“. In Ocean Seismo-Acoustics, 779–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2201-6_74.
Der volle Inhalt der QuelleAkal, T., A. Barbagelata, G. Guidi und M. Snoek. „Time Dependence of Infrasonic Ambient Seafloor Noise on a Continental Shelf“. In Ocean Seismo-Acoustics, 767–78. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2201-6_73.
Der volle Inhalt der QuelleBuckingham, Michael J., Grant B. Deane und Nicholas M. Carbone. „Inverting Ambient Noise in Shallow Water for the Bottom Geo-Acoustic Parameters“. In Full Field Inversion Methods in Ocean and Seismo-Acoustics, 347–52. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8476-0_56.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Seismic ambient noise"
Draganov, D., X. Campman, J. Thorbecke, A. Verdel und K. Wapenaar. „Event-driven Seismic Interferometry with Ambient Seismic Noise“. In 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609.201400811.
Der volle Inhalt der QuelleDraganov, D., X. Campman, J. Thorbecke, A. Verdel und K. Wapenaar. „Subsurface Structure from Ambient Seismic Noise“. In 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009. European Association of Geoscientists & Engineers, 2009. http://dx.doi.org/10.3997/2214-4609.201400571.
Der volle Inhalt der Quellede Ridder, Sjoerd. „Ambient seismic noise tomography at Valhall“. In SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.3627508.
Der volle Inhalt der QuelleKazantsev, A., M. Peruzzetto, H. Chauris, P. Dublanchet und F. Huguet. „Origins Of Rayleigh Wave Overtones In Ambient Noise“. In Seventh EAGE Workshop on Passive Seismic 2018. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201800067.
Der volle Inhalt der Quellede Ridder, Sjoerd. „Ambient seismic noise correlations for reservoir monitoring“. In SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 2012. http://dx.doi.org/10.1190/segam2012-1528.1.
Der volle Inhalt der Quellede Ridder, S. A. L., und J. R. Maddison. „Wave field inversion of ambient seismic noise“. In 79th EAGE Conference and Exhibition 2017 - Workshops. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701687.
Der volle Inhalt der QuelleJeremic, Aleksandar, Michael Thornton und Peter Duncan. „Ambient passive seismic imaging with noise analysis“. In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-13871643.1.
Der volle Inhalt der QuelleArogundade, Simisola, Wayne Pennington, Roger Turpening und Roohollah Askari. „Numerical modeling of ambient-noise seismic interferometry“. In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-13678078.1.
Der volle Inhalt der QuelleAlbaric, J., G. Hillers, D. Kuehn, D. Harris, F. Brenguier, M. Ohrnberger und V. Oye. „Ambient Seismic Noise Analysis from Array and Borehole Networks in Svalbard, Norway“. In Fifth EAGE Passive Seismic Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20142158.
Der volle Inhalt der QuelleRidder*, Sjoerd de, Biondo Biondi und Bob Clapp. „Time-lapse ambient-seismic-noise tomography at Valhall“. In SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0990.1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Seismic ambient noise"
Song, Xiaodong. Surface Wave Dispersion Measurements and Tomography From Ambient Seismic Noise in China. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2007. http://dx.doi.org/10.21236/ada496404.
Der volle Inhalt der QuelleSong, Xiaodong. Surface Wave Dispersion Measurements and Tomography from Ambient Seismic Noise Correlation in China. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada519099.
Der volle Inhalt der QuellePulliam, Robert, Frank Sepulveda, Joseph Thangraj, Diego Quiros, John Queen, Marge Queen und Joe Iovenitti. DEVELOPMENT OF A NOVEL, NEAR REAL TIME APPROACH TO GEOTHERMAL SEISMIC EXPLORATION AND MONITORING VIA AMBIENT SEISMIC NOISE INTERFEROMETRY. Office of Scientific and Technical Information (OSTI), Dezember 2019. http://dx.doi.org/10.2172/1648329.
Der volle Inhalt der QuelleTibuleac, Ileana, John Louie, Joe Iovenitti, Satish Pullammanappallil, William S. Honjas, Zachary Young und Bill Honjas. Quantifying EGS Reservoir Complexity with an Integrated Geophysical Approach-Improved Resolution Ambient Seismic Noise Interferometry. Office of Scientific and Technical Information (OSTI), März 2019. http://dx.doi.org/10.2172/1510528.
Der volle Inhalt der QuelleGiven, Holly K. Comparisons of Surface and Borehole Broadband Ambient Seismic Noise at IRIS Station RAR: Raratonga, Cook Islands. Fort Belvoir, VA: Defense Technical Information Center, Juni 1992. http://dx.doi.org/10.21236/ada267744.
Der volle Inhalt der QuelleTibuleac, Ileana. Development of a low cost method to estimate the seismic signature of a geothermal field form ambient noise analysis. Office of Scientific and Technical Information (OSTI), Juni 2016. http://dx.doi.org/10.2172/1340606.
Der volle Inhalt der Quelle