Auswahl der wissenschaftlichen Literatur zum Thema „Secondary ion mass spectrometer“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Secondary ion mass spectrometer" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Secondary ion mass spectrometer"

1

Todd, Peter J., und T. Gregory Schaaff. „A secondary ion microprobe ion trap mass spectrometer“. Journal of the American Society for Mass Spectrometry 13, Nr. 9 (September 2002): 1099–107. http://dx.doi.org/10.1016/s1044-0305(02)00434-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Olthoff, J. K., I. A. Lys und R. J. Cotter. „A pulsed time-of-flight mass spectrometer for liquid secondary ion mass spectrometry“. Rapid Communications in Mass Spectrometry 2, Nr. 9 (September 1988): 171–75. http://dx.doi.org/10.1002/rcm.1290020902.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baturin, V. A., S. A. Eremin und S. A. Pustovoĭtov. „Secondary ion mass spectrometer based on a high-dose ion implanter“. Technical Physics 52, Nr. 6 (Juni 2007): 770–75. http://dx.doi.org/10.1134/s1063784207060163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jiang, Jichun, Lei Hua, Yuanyuan Xie, Yixue Cao, Yuxuan Wen, Ping Chen und Haiyang Li. „High Mass Resolution Multireflection Time-of-Flight Secondary Ion Mass Spectrometer“. Journal of the American Society for Mass Spectrometry 32, Nr. 5 (20.04.2021): 1196–204. http://dx.doi.org/10.1021/jasms.1c00016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hull, Robert, Derren Dunn und Alan Kubis. „Nanoscale Tomographic Imaging using Focused Ion Beam Sputtering, Secondary Electron Imaging and Secondary Ion Mass Spectrometry“. Microscopy and Microanalysis 7, S2 (August 2001): 934–35. http://dx.doi.org/10.1017/s1431927600030749.

Der volle Inhalt der Quelle
Annotation:
As the importance of nano-scaled structures in both science and engineering increases, techniques for reconstructing three-dimensional structural, crystallographic and chemical relationships become increasingly important. in this paper we described a technique which uses focused ion beam (FIB) sputtering to expose successive layers of a 3D sample, coupled with secondary electron imaging and secondary ion mass spectrometry of each sputtered surface. Computer interpolation of these different slice images then enables reconstruction of the 3D structure and chemistry of the sample. These techniques are applicable to almost any inorganic material, at a spatial resolution of tens of nanometers, and fields of view up to (tens of μm).The FIB instrument used in this study is an FEI 200 with a minimum ion probe diameter < 10 nm, an ion current density ∼ 10 A/cm2, a maximum ion current of 11 nA, and a standard Ga+ ion energy of 30 keV. Our instrument is equipped with a continuous dynode electron multiplies (CDEM) for secondary electron imaging and a quadrupole mass spectrometer for secondary ion mass spectroscopy (SIMS) / element specific mapping. Gallium ions of this energy will ablate any material, with sputter yields typically of order ten, corresponding to a material removal rate of order 1 μm3nA−1s−1.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

ISHIKAWA, Shuji, und Yuko TAKEGUCHI. „Secondary Ion Mass Spectrometry“. Journal of the Japan Society of Colour Material 86, Nr. 10 (2013): 386–91. http://dx.doi.org/10.4011/shikizai.86.386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

FUJITA, Koichi. „Secondary Ion Mass Spectrometry“. Journal of the Japan Society of Colour Material 79, Nr. 2 (2006): 81–85. http://dx.doi.org/10.4011/shikizai1937.79.81.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Williams, Peter. „Secondary Ion Mass Spectrometry“. Annual Review of Materials Science 15, Nr. 1 (August 1985): 517–48. http://dx.doi.org/10.1146/annurev.ms.15.080185.002505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Griffiths, Jennifer. „Secondary Ion Mass Spectrometry“. Analytical Chemistry 80, Nr. 19 (Oktober 2008): 7194–97. http://dx.doi.org/10.1021/ac801528u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zalm, PC. „Secondary ion mass spectrometry“. Vacuum 45, Nr. 6-7 (Juni 1994): 753–72. http://dx.doi.org/10.1016/0042-207x(94)90113-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Secondary ion mass spectrometer"

1

Freeman, Stewart Peter Hans Thielbeer. „The radiocarbon microprobe : an imaging secondary ion accelerator mass spectrometer“. Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314932.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li, Libing. „Strategies for secondary ion yield enhancements in focused ion beam secondary ion mass spectrometry“. Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/11806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lemire, Sharon Warford. „Rigorous analytical applications of liquid secondary ion mass spectrometry/mass spectrometry“. Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jones, Brian N. „The development of MeV secondary Ion mass spectrometry“. Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580361.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT. The main aim of the research presented in this dissertation is to develop a novel imaging mass spectrometry technique that uses molecular desorption induced by heavy ions accelerated to kinetic energies in the MeV/u regime. Upon impact with a sample, heavy ions accelerated above the Bohr velocity deposit their energy predominantly through electronic stopping and this has been shown to produce high sputtering yields from an insulating sample's surface. This interaction has been traditionally called electronic sputtering and was first put to analytical use many decades ago by a technique called Plasma Desorption Mass Spectrometry (PDMS). Despite its inability to provide spatially resolved measurements, PDMS became a popular way to analyse biomolecular samples until other techniques, such as matrix-assisted laser desorption/ionisation (MALDI), became readily available. There are many ion beam analysis (IBA) facilities currently operating throughout the world dedicated to accelerating and focusing ion beams with the required kinetic energy to induce electronic sputtering, but until this work there has not been any attempt to develop a time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique that makes use of a scanning proton microprobe facility. This research, therefore, has been performed at the Surrey Ion Beam Centre to explore the benefits of exploiting electronic sputtering in imaging mass spectrometry studies using existing IBA technology and techniques. Due to its initial success, this novel imaging mass spectrometry technique has recently been recognised as "MeV -SIMS" by the international scientific community. As will be presented in the final chapter, because MeV primary ions can be focused through thin exit windows to analyse a sample without the need for a vacuum chamber, MeV-SIMS has recently been developed into a fully ambient pressure technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hearn, M. J. „Polymer surface studies by Secondary Ion Mass Spectrometry“. Thesis, De Montfort University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Coath, Christopher D. „A study of ion-optics for microbeam secondary-ion mass spectrometry“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gilmore, Ian Stuart. „Development of a measurement base for static secondary ion mass spectrometry“. Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/11110.

Der volle Inhalt der Quelle
Annotation:
This work sets out a framework to provide a metrological basis for static SIMS measurements. This surface analytical technique has been is use for over thirty years but, because of the lack of an infrastructure, has not achieved its full potential in industry. To build this basis, the measurement chain is studied from the sample through to the detector and data processing. By understanding the effects of each link in the chain, repeatabilities are reduced by orders of magnitude to below 1%, the ion beam current and flux density are calibrated to better than 2%, ion beam damage in polymers is controlled and detection efficiencies calculated. Utilising these developments, a characterised and calibrated SIMS spectrometer is used to establish reference materials. An inter-laboratory study to assess the extent of spectrum variability between spectrometers was conducted involving over twenty laboratories worldwide. Analysis of the data gives the level of repeatability and reproducibility using current procedures. Repeatabilities for some laboratories are as good as 1% but many are at 10% and a few as poor as 80%. A Relative Instrument Spectral Response, RISR, is developed to facilitate the comparison of spectra from one instrument to another or library data. For most instruments reproducibilities of 14% are achievable. Additionally, the wide variety of ion beam sources and energies, presently in use, result in spectra that are only broadly comparable. A detailed study of these effects provides, for the first time, a unified method to relate the behaviour for all ion species and energies. A development of this work gives a totally new spectroscopy, known as G-SIMS or gentle-SIMS. Here, the static SIMS spectrum for a low surface plasma temperature is calculated which promotes those spectral intensities truly representative of the analysed material and reduces those caused by additional fragmentation and rearrangement mechanisms. The resulting GSIMS spectra are easier to identify and are interpreted more directly. This work provides the essential basis for the development of static SIMS. Future work will improve the consistency of library data so that the valid data for molecular identification can be uniquely extracted. The measurement base will be developed to meet the growing requirements for static SIMS analysis of complex organic and biomaterials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

John, Gareth David. „Secondary ion mass spectrometry and resonant ionisation mass spectrometry studies of nickel contacts to silicon carbide“. Thesis, Swansea University, 2004. https://cronfa.swan.ac.uk/Record/cronfa42495.

Der volle Inhalt der Quelle
Annotation:
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and resonant ionisation mass spectrometry (RIMS) have been used to perform depth profile analyses on nickel (Ni) contacts to silicon carbide (SiC) to understand the interfacial properties. In particular, as-deposited Schottky contacts and high temperature annealed Ohmic contacts have been characterised. Previous literature had indicated that the chemistry of the interface controlled the electrical properties of the contact. Using the TOF-SIMS system, depth profiles have been performed with the standard duoplasmatron ion source and a newly introduced liquid metal ion gun. Sputtering conditions have been optimised enabling detailed depth profiling of Schottky and Ohmic samples. The data from these samples have indicated a distinct difference between the two contact types. Schottky samples have been shown to have an abrupt interface with any interfacial reaction appearing to be confined to the intimate interface. This region had no significant affect on ion yield. Conversely, the Ohmic samples exhibited an extended Si composition well into the Ni contact layer. Moreover, the ion yield varied substantially throughout the contact layer indicating matrix changes were present as a result of annealing to 1000&C. RIMS studied the variation of Ni atoms sputtered into the Ni ground state (a3F4) and first excited state (a3D3) to determine variation in chemical bonding as a function of depth through the contact. Using a defocused ion beam passing through an aperture, detailed depth profiles were obtained by using two-colour, two-step resonant ionisation scheme. Again, a significant variation exists between the RIMS signals from Ohmic and Schottky samples. The ratio of the excited state to ground state for Ni showed measurable variations indicative of multiple Ni-silicide phases. Models for these interfaces are proposed and support other studies performed on this material system. The success of these techniques is reviewed together with suggestions for experimental development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

De, Souza Roger A., und Manfred Martin. „Secondary ion mass spectrometry and its application to diffusion in oxides“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

De, Souza Roger A., und Manfred Martin. „Secondary ion mass spectrometry and its application to diffusion in oxides“. Diffusion fundamentals 12 (2010) 9, 2010. https://ul.qucosa.de/id/qucosa%3A13868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Secondary ion mass spectrometer"

1

van der Heide, Paul. Secondary Ion Mass Spectrometry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118916780.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

L, Bentz B., und Odom R. W, Hrsg. Secondary ion mass spectrometry. Amsterdam: Elsevier, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wilson, R. G. Secondary ion mass spectrometry. Chichester: Wiley, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mahoney, Christine M., Hrsg. Cluster Secondary Ion Mass Spectrometry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118589335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Benninghoven, Alfred, Richard J. Colton, David S. Simons und Helmut W. Werner, Hrsg. Secondary Ion Mass Spectrometry SIMS V. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82724-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

C, Vickerman J., Brown A. Alan und Reed Nicola M, Hrsg. Secondary ion mass spectrometry: Principles and applications. Oxford: Clarendon Press, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

A, Brown, und Vickerman J. C, Hrsg. Handbook of static secondary ion mass spectrometry. Chichester [West Sussex]: J. Wiley, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hearn, Martin John. Polymer surface studies by secondary ion mass spectrometry. Leicester: Leicester Polytechnic, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

G, Rüdenauer F., und Werner H. W, Hrsg. Secondary ion mass spectrometry: Basic concepts, instrumental aspects, applications, and trends. New York: J. Wiley, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

International Conference on Secondary Ion Mass Spectrometry (11th 1997 Orlando, Fla.). Secondary ion mass spectrometry, SIMS XI: Proceedings of the Eleventh International Conference on Secondary Ion Mass Spectrometry, Orlando, Florida, September 7-12th, 1997. Herausgegeben von Gillen G. Chichester: Wiley, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Secondary ion mass spectrometer"

1

Niehuis, E., T. Heller, H. Feld und A. Benninghoven. „High-Resolution TOF Secondary Ion Mass Spectrometer“. In Springer Proceedings in Physics, 198–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82718-1_37.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Niehuis, E., T. Heller, H. Feld und A. Benninghoven. „High Resolution TOF Secondary Ion Mass Spectrometer“. In Springer Series in Chemical Physics, 188–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82724-2_48.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baker, Judith E. „Secondary Ion Mass Spectrometry“. In Practical Materials Characterization, 133–87. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9281-8_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Grimblot, J., und M. Abon. „Secondary Ion Mass Spectrometry“. In Catalyst Characterization, 291–319. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9589-9_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Asher, S. E. „Secondary Ion Mass Spectrometry“. In Microanalysis of Solids, 149–77. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1492-7_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gardella, Joseph A. „Secondary ion mass spectrometry“. In The Handbook of Surface Imaging and Visualization, 705–12. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780367811815-51.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Michałowski, Paweł Piotr. „Secondary Ion Mass Spectrometry“. In Microscopy and Microanalysis for Lithium-Ion Batteries, 189–214. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003299295-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fahey, Albert J. „Ion Sources Used for Secondary Ion Mass Spectrometry“. In Cluster Secondary Ion Mass Spectrometry, 57–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118589335.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Groenewold, Gary S., Anthony D. Appelhans, Garold L. Gresham und John E. Olson. „Measurements of Surface Contaminants and Sorbed Organics Using an Ion Trap Secondary Ion Mass Spectrometer“. In Mass Spectrometry Handbook, 491–507. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118180730.ch22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ireland, Trevor R. „Secondary Ion Mass Spectrometry (SIMS)“. In Encyclopedia of Scientific Dating Methods, 739–40. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6304-3_106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Secondary ion mass spectrometer"

1

Downey, Stephen W. „Comparison of secondary ion mass spectrometry and resonance ionization mass spectrometry“. In OE/LASE '90, 14-19 Jan., Los Angeles, CA, herausgegeben von Nicholas S. Nogar. SPIE, 1990. http://dx.doi.org/10.1117/12.17881.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gillen, Greg. „Cluster primary ion beam secondary ion mass spectrometry for semiconductor characterization“. In The 2000 international conference on characterization and metrology for ULSI technology. AIP, 2001. http://dx.doi.org/10.1063/1.1354477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Peizhi, Zemin Bao und Tao Long. „The Research of Secondary Neutral Particles Spatial Distribution of Secondary Ion Mass Spectrometry“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2747.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Anderle, M. „Ultra Shallow Depth Profiling by Secondary Ion Mass Spectrometry Techniques“. In CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY: 2003 International Conference on Characterization and Metrology for ULSI Technology. AIP, 2003. http://dx.doi.org/10.1063/1.1622547.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Appelhans, Anthony D., Gary S. Groenewold, Jani C. Ingram, D. A. Dahl und J. E. Delmore. „Molecular beam static secondary ion mass spectrometry for surface analysis“. In Photonics West '95, herausgegeben von Bryan L. Fearey. SPIE, 1995. http://dx.doi.org/10.1117/12.206432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Van Lierde, Patrick, Chunsheng Tian, Bruce Rothman und Richard A. Hockett. „Quantitative secondary ion mass spectrometry (SIMS) of III-V materials“. In Symposium on Integrated Optoelectronic Devices, herausgegeben von Gail J. Brown und Manijeh Razeghi. SPIE, 2002. http://dx.doi.org/10.1117/12.467668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dandong Ge, Preu Harald, Gan Swee Lee und Liang Kng Ian Koh. „Semi-quantitative analysis of trace elements by Secondary Ion Mass Spectrometry“. In 2010 12th Electronics Packaging Technology Conference - (EPTC 2010). IEEE, 2010. http://dx.doi.org/10.1109/eptc.2010.5702681.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wilhelm, Gudrun. „Degeneration of Li-Ion batteries studied with a Field Emission Scanning Electron Microscope equipped with a Secondary Ion Mass Spectrometer“. In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Schnieders, A., und T. Budri. „Full wafer defect analysis with time-of-flight secondary Ion Mass Spectrometry“. In 2010 21st Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2010. http://dx.doi.org/10.1109/asmc.2010.5551443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Khan, Parwaiz A. A., und Anand J. Paul. „Surface study of laser welded stainless steels using secondary ion mass spectrometry“. In ICALEO® ‘93: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1993. http://dx.doi.org/10.2351/1.5058637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Secondary ion mass spectrometer"

1

Bavarian, Behzad. Acquisition of Secondary Ion Mass Spectrometer with Fracture Stage. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2002. http://dx.doi.org/10.21236/ada416275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Groenewold, G. S., A. D. Applehans, J. C. Ingram, J. E. Delmore und D. A. Dahl. In situ secondary ion mass spectrometry analysis. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/6483751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Groenewold, G. S., A. D. Applehans, J. C. Ingram, J. E. Delmore und D. A. Dahl. In situ secondary ion mass spectrometry analysis. 1992 Summary report. Office of Scientific and Technical Information (OSTI), Januar 1993. http://dx.doi.org/10.2172/10150987.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

MacPhee, J. A., R. R. Martin und N. S. McIntyre. An investigation of coal using secondary ion mass spectrometry (SIMS). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/302550.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Stern, R. A., und N. Sanborn. Monazite U-Pb and Th-Ph geochronology by high-resolution secondary ion mass spectrometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/210051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hickmott, Donald D., und Lee D. Riciputi. Science of Signatures Workshop on Secondary Ion Mass Spectrometry (SIMS) Applications July 24, 2012. Office of Scientific and Technical Information (OSTI), Juli 2012. http://dx.doi.org/10.2172/1047099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jackman, J. A., P. A. Hunt, O. Van Breemen und R. L. Hervig. Preliminary Investigation On Spatial Distributions of Elements in Zircon Grains By Secondary Ion Mass Spectrometry. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hanrahan, R. J. Jr, S. P. Withrow und M. Puga-Lambers. Measurements of the diffusion of iron and carbon in single crystal NiAl using ion implantation and secondary ion mass spectrometry. Office of Scientific and Technical Information (OSTI), Dezember 1998. http://dx.doi.org/10.2172/296786.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Riciputi, Lee. Science of Signatures Workshop on Secondary Ion Mass Spectrometry (SIMS) Applications Some Nuclear and Geological Applications. Office of Scientific and Technical Information (OSTI), Juli 2012. http://dx.doi.org/10.2172/1047088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Frisbie, C. D., J. R. Martin, R. R. Duff, Wrighton Jr. und M. S. Use of High Lateral Resolution Secondary Ion Mass Spectrometry to Characterize Self-Assembled Monolayers on Microfabricated Structures. Fort Belvoir, VA: Defense Technical Information Center, Februar 1992. http://dx.doi.org/10.21236/ada245797.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie