Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Seagrasses“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Seagrasses" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Seagrasses"
Batuwael, Anggi Wawan, und Dominggus Rumahlatu. „ASOSIASI GASTROPODA DENGAN TUMBUHAN LAMUN DI PERAIRAN PANTAI NEGERI TIOUW KECAMATAN SAPARUA KABUPATEN MALUKU TENGAH“. Biopendix: Jurnal Biologi, Pendidikan dan Terapan 4, Nr. 2 (22.05.2019): 109–16. http://dx.doi.org/10.30598/biopendixvol4issue2page109-116.
Der volle Inhalt der QuelleIerodiaconou, Daniel A., und Laurie J. B. Laurenson. „Estimates of Heterozostera tasmanica, Zostera muelleri and Ruppia megacarpa distribution and biomass in the Hopkins Estuary, western Victoria, by GIS“. Australian Journal of Botany 50, Nr. 2 (2002): 215. http://dx.doi.org/10.1071/bt00093.
Der volle Inhalt der QuelleShort, Frederick T., und Sandy Wyllie-Echeverria. „Natural and human-induced disturbance of seagrasses“. Environmental Conservation 23, Nr. 1 (März 1996): 17–27. http://dx.doi.org/10.1017/s0376892900038212.
Der volle Inhalt der QuelleBurkholder, Derek A., Michael R. Heithaus und James W. Fourqurean. „Feeding preferences of herbivores in a relatively pristine subtropical seagrass ecosystem“. Marine and Freshwater Research 63, Nr. 11 (2012): 1051. http://dx.doi.org/10.1071/mf12029.
Der volle Inhalt der QuelleJ. Lee Long, W., R. G. Coles und L. J. McKenzie. „Issues for seagrass conservation management in Queensland“. Pacific Conservation Biology 5, Nr. 4 (1999): 321. http://dx.doi.org/10.1071/pc000321.
Der volle Inhalt der QuelleOmollo, Derrick, Virginia Wang’ondu, Michael Githaiga, Daniel Gorman und James Kairo. „The Contribution of Subtidal Seagrass Meadows to the Total Carbon Stocks of Gazi Bay, Kenya“. Diversity 14, Nr. 8 (11.08.2022): 646. http://dx.doi.org/10.3390/d14080646.
Der volle Inhalt der QuelleSamper-Villarreal, Jimena. „Seagrasses in the Eastern Tropical Pacific: species, distribution ecology, blue carbon, and threats“. Latin American Journal of Aquatic Research 52, Nr. 3 (30.06.2024): 336–49. http://dx.doi.org/10.3856/vol52-issue3-fulltext-3167.
Der volle Inhalt der QuellePollard, PC, und M. Greenway. „Photosynthetic characteristics of seagrasses (Cymodocea serrulata, Thalassia hemprichii and Zostera capricornia) in a low-light environment, with a comparison of leaf-marking and lacunal-gas measurements of productivity“. Marine and Freshwater Research 44, Nr. 1 (1993): 127. http://dx.doi.org/10.1071/mf9930127.
Der volle Inhalt der QuelleLavery, Paul. „Marine Management: Marine Conservation“. Pacific Conservation Biology 5, Nr. 4 (1999): 240. http://dx.doi.org/10.1071/pc00240a.
Der volle Inhalt der QuelleHwang, Charnsmorn, Chih-Hua Chang, Michael Burch, Milena Fernandes und Tim Kildea. „Effects of Epiphytes and Depth on Seagrass Spectral Profiles: Case Study of Gulf St. Vincent, South Australia“. International Journal of Environmental Research and Public Health 16, Nr. 15 (29.07.2019): 2701. http://dx.doi.org/10.3390/ijerph16152701.
Der volle Inhalt der QuelleDissertationen zum Thema "Seagrasses"
Mvungi, Esther Francis. „Seagrasses and Eutrophication : Interactions between seagrass photosynthesis, epiphytes, macroalgae and mussels“. Doctoral thesis, Stockholms universitet, Botaniska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-55808.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Papers 1, 3 and 4: Submitted. Paper 2: Manuscript.
Swedish Agency for Research Cooperation (Sida/SAREC) marine bilateral programme
Horn, Lotte E. „The measurement of seagrass photosynthesis using pulse amplitude modulated (PAM) fluorometry and its practical applications, specifically in regard to transplantation /“. Access via Murdoch University Digital Theses Project, 2006. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20061123.150231.
Der volle Inhalt der QuelleUku, Jacqueline. „Seagrasses and their epiphytes : Characterization of abundance and productivity in tropical seagrass beds“. Doctoral thesis, Stockholm University, Department of Botany, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-527.
Der volle Inhalt der QuelleSeagrass beds cover large intertidal and subtidal areas in coastal zones around the world and they are subjected to a wide variety of anthropogenic influences, such as nutrient enrichment due to sewage seepage. This study was undertaken to address specific questions focusing on whether near shore tropical seagrasses that receive a constant influx of groundwater nutrient inputs, would exhibit a higher productivity and to what extent epiphytic algae reflect the impacts of nutrient inputs. An additional aspect of study was to determine the prevalence of “acid zones” in tropical seagrasses. The productivity of the seagrasses Cymodocea rotundata, Thalassia hemprichii and Thalassodendron ciliatum was compared in two sites along the Kenyan coast; Nyali (a high nutrient site) and Vipingo (a low nutrient site). Of the three seagrasses T. hemprichii showed the most distinct differences with higher growth and biomass in the nutrient rich site whereas the growth of C. rotundata was similar in the two sites. A high epiphytic cover was found on the shoots of T. ciliatum found in the high nutrient site Nyali.
Morphological and genetic characterization of bacterial and cyanobacterial epiphytes showed specific associations of nitrogen fixing cyanobacteria on the seagrass C. rotundata in the low nutrient site (Vipingo). At this site, shoots of C. rotundata had a higher C:N ratio compared to shoots in the high nutrient site (Nyali) indicating that the association with nitrogen fixing cyanobacteria is a strategy, for this species, to meet its nutrient needs. Bacterial epiphytes belonging to the group Cytophaga-Flavobacteria-Bacteroides (CFB) were found on T. ciliatum and T. hemprichii from the two sites. CFB bacteria are characteristic of waste water, particularly from livestock farming areas, thereby confirming seepage of groundwater from surrounding catchment areas. These prokaryotic associations were specific for the different seagrasses and it appears that the establishment of epiphytic associations may not be a random encounter but a specific association that meets specific needs.
The seagrass T. ciliatum in the high nutrient site had an abundance of macroalgal epiphytes and the impact of the epiphytic coverage was assessed using Pulse Amplitude Modulated (PAM) fluorometry. The photosynthetic activity of seagrass parts that were covered by epiphytes was suppressed but the productivity of the whole shoot was not significantly reduced. In the nutrient rich site, epiphytes were found to contribute up to 45% of the total estimated gross productivity, during the SE monsoon season, while epiphytic contribution in the nutrient poor site, was 8%. Epiphytic abundance and contribution to productivity decreased during the NE monsoon. The photosynthetic activity of T. ciliatum shoots was similar in the two study sites with shoots in the nutrient rich site growing faster. T. ciliatum, in the low nutrient site, invested in the development of below ground root tissue which may indicate the development of a strategy to gain access to pore water nutrient pools.
Carbon uptake strategies of eight tropical seagrasses were re-evaluated to determine how common the “acid zone” mechanism is among tropical seagrasses. Six of the eight species studied showed photosynthetic inorganic carbon (Ci) acquisition based on carbonic anhydrase catalysed HCO3- to CO2 conversions within an acidified diffusion boundary layer (“acid zone”). Cymodocea serrulata appeared to maintain its carbon uptake by extracellular carbonic anhydrase catalysed CO2 formation from HCO3- without the need for acidic zones, whereas, Halophila ovalis appeared to have a system in which H+ extrusion may be followed by HCO3--H+ co-transport into the cells. These findings indicate that competition for carbon, between the host seagrass species and epiphytes, could determine seagrass-epiphyte associations.
Uku, Jacqueline Nduku. „Seagrasses and their epiphytes : characterization of abundance and productivity in tropical seagrass beds /“. Stockholm : Dept. of Botany, Stockholm university, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-527.
Der volle Inhalt der QuelleArpayoglou, Irene. „Cultivation of Wrack Collected Seagrasses“. NSUWorks, 2004. http://nsuworks.nova.edu/occ_stuetd/285.
Der volle Inhalt der QuelleMcMahon, Kathryn. „Recovery of subtropical seagrasses from natural disturbances /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19102.pdf.
Der volle Inhalt der QuelleTadkaew, Nichanan. „Monitoring of seagrasses in Lake Illawarra, NSW“. Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070821.142240/index.html.
Der volle Inhalt der QuellePaxson, Jill C. „Branching frequency of Thalassia testudinum (Banks ex König) as an ecological indicator in Florida Bay /“. Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/paxsonj/jillpaxson.pdf.
Der volle Inhalt der QuelleHernán, Martínez Gema. „Defense strategies against herbivory in seagrasses“. Doctoral thesis, Universitat de les Illes Balears, 2017. http://hdl.handle.net/10803/565412.
Der volle Inhalt der Quelle[spa]Introducción: El herbivorismo es un proceso ecológico clave que regula la composición y estructura de las comunidades de plantas y determina la transferencia de energía de productores primarios al resto de la cadena trófica. Las plantas han desarrollado diversos mecanismos de defensa para evitar o resistir el herbivorismo. Entre ellos están las estrategias tolerancia, que disminuyen el efecto del herbivorismo en la vitalidad de la planta (ej. acumulación de reservas en tejidos subterráneos) y las estrategias de resistencia cuyo objetivo es evitar el consumo (ej. aumento del contenido en fibra). Estas estrategias se basan en características morfológicas (ej. dureza) y químicas de las plantas (ej. defensas químicas) y pueden expresarse de forma continua (constitutivas) o en respuesta al daño por herbívoros (inducidas). El herbivorismo en el medio marino puede ser mayor que en sistemas terrestres y puede tener importantes consecuenc ias cuando afecta a especies formadoras de hábitat Las fanerógamas marinas son especies fundadoras dominantes en zonas someras costeras que nos proporcionan múltiples e importantes servicios. Debido a su relevancia ecológica y socioeconómica, profundizar en el conocimiento de las interacciones planta-herbívoro en estos ecosistemas es crucial pues existen cada vez más ejemplos que indican que cambios en las poblaciones de herbívoros han supuesto importantes perturbaciones en dichos ecosistemas. El propósito principal de esta tesis es entender cómo cambios en factores ambientales determinan la variación de las estrategias de defensa y palatabilidad de la planta, y por tanto el comportamiento de los herbívoros. Contenido La disponibilidad de nutrientes destaca por sus efectos sobre las características químicas y morfológicas de las plantas ya que aumenta el valor nutritivo y disminuye el contenido en fibras de las hojas tanto en experimentos de fertilización como en regiones con mayor disponibilidad de nutrientes, lo cual las puede hacer más vulnerables al consumo por herbívoros. La simulación del daño por herbívoros afecta a las estrategias de defensa de las plantas de forma diferente en las dos especies estudiadas. Mientras que en Posidonia oceanica se induce la producción de compuestos de resistencia, en Zostera marina no hay inducción disminuyendo además su resistencia y tolerancia. Esto se traduce en que los herbívoros prefieren las hojas más nutritivas repetidamente recortadas de Z. marina y las hojas sin recortar con menos fibras y más nutrientes de P. oceanica. Los cambios ambientales relacionados con el cambio global analizados en esta tesis (aumento del CO2 y de la temperatura), tienen importantes efectos en las plántulas de P. oceanica. El aumento del CO2 disuelto aumenta la actividad fotosintética de la planta y con esto las reservas de carbohidratos de las semillas. A pesar de que el aumento de CO2 disminuye la calidad nutricional de las hojas, éstas fueron las preferidas por los herbívoros, posiblemente debido al aumento de sacarosa o por otras características no analizadas en las plántulas. Al contrario que el aumento de CO2, el incremento de la temperatura produce efectos claramente negativos aumentando la mortalidad, la respiración y uso de las reservas de la semilla en estas plántulas. Además, disminuye el contenido en fibras de las hojas reduciéndose la resistencia frente al herbivorismo y aumentando por tanto la preferencia por herbívoros. Estos resultados muestran los potenciales efectos aditivos que el herbivorismo puede suponer en los impactos de los cambios ambientales en las poblaciones de plantas marinas. Conclusión La investigación presentada en esta tesis contribuye a entender los mecanismos que influyen en los cambios de las estrategias de defensa frente al herbivorismo. Principalmente, en cómo estos mecanismos cambian bajo diferentes condiciones ambientales y como los cambios en las características asociadas a resistencia frente a herbívoros determinan la vulnerabilidad de la planta frente al herbivorismo. Además, destaca la importancia de evaluar los efectos de los cambios ambientales sobre las interacciones entre especies.
[eng]Introduction Herbivory is a key ecological process that regulates the composition and structure of plant communities and determines the energy transferred from primary producers to upper trophic levels. Plants have evolved a suite of defense strategies to avoid or resist herbivory. Tolerance strategies reduce the impact of herbivory in plant fitness (e.g., increased belowground reserves), and resistance strategies reduce preference or performance of the herbivore (e.g., low nutritional quality, high fiber content). These strategies are based on morphological (e.g., toughness) and chemical traits (e.g., phenolic compounds) and can be expressed regardless of the risk of herbivory (constitutively) or in response to herbivore damage (induced). In addition, defense strategies may shift under different environmental scenarios (e.g. higher resource availability often drives a lower investment in resistance). Herbivory in marine systems can be greater than in terrestrial ecosystems, and it can have particularly important consequences when it is exerted upon habitat-forming plants. Seagrasses are key foundation species dominating shallow coastal areas and providing numerous and critical ecosystem services to humans. Given their ecological and socioeconomic relevance, understanding plant-herbivore interactions in these systems is crucial since changes in herbivore populations can result in important disturbances in these ecosystems. The main purpose of this thesis is to understand the effect of changes in environmental factors in plant defense strategies against herbivory and how these changes affect the palatability of the plant, and thus herbivore behavior. Content Nutrient availability stands out for its effects on chemical and morphological plant defense traits. Plants under high nutrient environments in fertilization experiments and regions of higher nutrient availability (i.e. latitudinal comparison) exhibited higher nutritional quality and lower fiber content, both of which can increase their vulnerability to consumption. Interestingly, effects of nutrients on secondary compounds were absent or inconsistent. Simulated herbivory had clear effects on both morphological and chemical plant defense traits, however the two species studied differed in their responses. While in Posidonia oceanica, herbivory induced the production of resistance traits (e.g. fiber, secondary metabolites), in Zostera marina there was no induction of resistance traits, and on the contrary, simulated herbivory reduced their tolerance and resistance. As a result of the changes in traits exhibited by the plants, herbivores preferred the more nutritious repeatedly clipped leaves of Z. marina and the less chemically defended and more nutritious unclipped leaves of P. oceanica. The environmental changes related to global climate change that I analyzed in this thesis (i.e. increased CO2 and temperature), had important effects on defense strategies and susceptibility to grazers of P. oceanica seedlings. The increased pCO2 of seawater enhanced plant photosynthetic activity, leading to higher carbohydrate reserves in the seeds, which are the main storage tissue of the seedling. Although the increase in CO2 decreased leaf nutritional quality (i.e. leaf nitrogen), plants growing under high CO2 were preferred by the herbivores, possibly due to their increase in sucrose content or perhaps other chemical or structural characteristics that were not analyzed. In contrast to CO2, the increase in temperature produced clear negative effects on seedlings; increasing mortality and respiration resulting in greater use of seed reserves. Furthermore, warming reduced leaf fiber, which increased herbivore preference for warmed plants, and thus resulted in a decreased resistance to herbivory. These results illustrate the potential additive or counteractive effects that herbivory could have on determining the effects of environmental changes in seagrass ecosystems. Conclusion The research presented in this thesis contributes to identify the mechanisms that drive the changes in defense strategies against herbivory due to changes in environmental factors. Particularly, how these mechanisms change under different environmental conditions and how changes in traits associated with resistance to herbivores determine the vulnerability of plants to herbivory, highlighting the importance of assessing the effects of environmental factors on species interactions.
Kahn, Amanda E. „Physiological ecology of the seagrass Halophila Johnosnii Eiseman in marine and riverine influenced environments“. View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-3/r1/kahna/amandakahn.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Seagrasses"
Phillips, Ronald C. Seagrasses. Washington, D.C: Smithsonian Institution Press, 1988.
Den vollen Inhalt der Quelle findenLarkum, Anthony W. D., Gary A. Kendrick und Peter J. Ralph, Hrsg. Seagrasses of Australia. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0.
Der volle Inhalt der QuelleMiththapala, Sriyanie. Seagrasses and sand dunes. Colombo, Sri Lanka: Ecosystems and Livelihoods Group Asia, IUCN, 2008.
Den vollen Inhalt der Quelle findenGreen, Edmund P. World atlas of seagrasses. Berkeley, CA: University of California Press, 2004.
Den vollen Inhalt der Quelle finden1965-, Green Edmund P., und Short Frederick T, Hrsg. World atlas of seagrasses. Berkeley: University of California Press, 2003.
Den vollen Inhalt der Quelle findenMiththapala, Sriyanie. Seagrasses and sand dunes. Colombo, Sri Lanka: Ecosystems and Livelihoods Group Asia, IUCN, 2008.
Den vollen Inhalt der Quelle findenK, Ramamurthy, und Botanical Survey of India, Hrsg. Seagrasses of coromandel coast India. Coimbatore: Botanical Survey of India, 1992.
Den vollen Inhalt der Quelle findenTié̂n, Nguyẽ̂n Văn. Cỏ biẻ̂n Việt Nam: Thành phà̂n loài, phân bó̂, sinh thái-sinh học. Hà Nội: Nhà xuá̂t bản Khoa học và kỹ thuật, 2002.
Den vollen Inhalt der Quelle findenPulich, Warren. Current status and historical trends of seagrasses in the Corpus Christi Bay National Estuary Program study area. [Austin, Tex: Texas Natural Resource Conservation Commission, 1997.
Den vollen Inhalt der Quelle findenPhang, Siew Moi. Seagrasses of Malaysia: Phang Siew-Moi. Kuala Lumpur, Malaysia: Institute of Biological Sciences, University of Malaya, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Seagrasses"
Short, F. T., C. A. Short und A. B. Novak. „Seagrasses“. In The Wetland Book, 1–19. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6173-5_262-1.
Der volle Inhalt der QuelleShort, Frederick T., Cathy A. Short und Alyssa B. Novak. „Seagrasses“. In The Wetland Book, 73–91. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-007-4001-3_262.
Der volle Inhalt der QuelleMerlin, Mark D. „Seagrasses“. In Encyclopedia of Modern Coral Reefs, 973–78. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2639-2_146.
Der volle Inhalt der QuelleCortés, Jorge, und Eva Salas. „Seagrasses“. In Marine Biodiversity of Costa Rica, Central America, 119–22. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8278-8_6.
Der volle Inhalt der QuelleAl-Mansoori, Noura, und Himansu Sekhar Das. „Seagrasses of the United Arab Emirates“. In A Natural History of the Emirates, 267–85. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37397-8_9.
Der volle Inhalt der QuellePérez-Lloréns, J. Lucas, Juan J. Vergara, Irene Olivé, Jesús M. Mercado, Rafael Conde-Álvarez, Ángel Pérez-Ruzafa und Félix L. Figueroa. „Autochthonous Seagrasses“. In The Mediterranean Sea, 137–58. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6704-1_9.
Der volle Inhalt der QuelleCunha-Lignon, Marília, Jocemar Tomasino Mendonça, Luis Americo Conti, Kcrishna Vilanova de Souza Barros und Karine Matos Magalhães. „Mangroves and Seagrasses“. In Blue Economy, 55–85. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5065-0_3.
Der volle Inhalt der QuelleLarkum, Anthony W. D., Michelle Waycott und John G. Conran. „Evolution and Biogeography of Seagrasses“. In Seagrasses of Australia, 3–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0_1.
Der volle Inhalt der QuelleO’Brien, Katherine R., Matthew P. Adams, Angus J. P. Ferguson, Jimena Samper-Villarreal, Paul S. Maxwell, Mark E. Baird und Catherine Collier. „Seagrass Resistance to Light Deprivation: Implications for Resilience“. In Seagrasses of Australia, 287–311. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0_10.
Der volle Inhalt der QuelleLarkum, Anthony W. D., Mathieu Pernice, Martin Schliep, Peter Davey, Milan Szabo, John A. Raven, Mads Lichtenberg, Kasper Elgetti Brodersen und Peter J. Ralph. „Photosynthesis and Metabolism of Seagrasses“. In Seagrasses of Australia, 315–42. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71354-0_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Seagrasses"
Tongnunui, Prasert, Prasert Tongnunui, Woraporn Tarangkoon, Woraporn Tarangkoon, Parichat Hukiew, Parichat Hukiew, Patcharee Kaeoprakan et al. „SEAGRASS RESTORATION: AN UPDATE FROM TRANG PROVINCE, SOUTHWESTERN THAILAND“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b9447ad58f1.23030316.
Der volle Inhalt der QuelleTongnunui, Prasert, Prasert Tongnunui, Woraporn Tarangkoon, Woraporn Tarangkoon, Parichat Hukiew, Parichat Hukiew, Patcharee Kaeoprakan et al. „SEAGRASS RESTORATION: AN UPDATE FROM TRANG PROVINCE, SOUTHWESTERN THAILAND“. In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b431687e149.
Der volle Inhalt der QuelleAbdelbary, Ekhlas M. M., und Aisha AlAshwal. „A comparative study of Seagrasses Species in Regional Seas and QMZ“. In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0039.
Der volle Inhalt der QuellePovidisa, Katrina, und Marianne Holmer. „Iron plaque formation on seagrasses: Why not?“ In 2008 IEEE/OES US/EU-Baltic International Symposium (BALTIC). IEEE, 2008. http://dx.doi.org/10.1109/baltic.2008.4625509.
Der volle Inhalt der QuelleRahmawati, Susi, Udhi Eko Hernawan und Agustin Rustam. „The seagrass carbon content of 0.336 of dry weight can be applied in Indonesian seagrasses“. In INTERNATIONAL CONFERENCE ON BIOLOGY AND APPLIED SCIENCE (ICOBAS). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5115616.
Der volle Inhalt der QuelleMushtaha, Mohanad, Yousef Ashraf Nasr und Abdullrahman Al-Muftah. „Diatoms & Dinoflagellates Associated with Seagrasses, Algae and Mangrove“. In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.eesp2462.
Der volle Inhalt der QuelleDubey, Ashwani Kumar, Jibi G. Thanikkal, E. Dilipan, Puneet Sharma und Manoj Kumar Shukla. „An Efficient Machine Learning Model for Identification of Seagrasses through Morphometrics“. In 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). IEEE, 2024. http://dx.doi.org/10.1109/iatmsi60426.2024.10503347.
Der volle Inhalt der QuelleJuan-Vicedo, Jorge, und Alice Carrara. „Current conservation status of autochthonous seagrasses in the Mediterranean Sea: a systematic review“. In MOL2NET'22, Conference on Molecular, Biomedical & Computational Sciences and Engineering, 8th ed. - MOL2NET: FROM MOLECULES TO NETWORKS. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/mol2net-08-12744.
Der volle Inhalt der QuelleANSTEE, JANET M., ARNOLD G. DEKKER und VITTORIO E. BRANDO. „RETROSPECTIVE CHANGE DETECTION IN A SHALLOW COASTAL TIDAL LAKE: MAPPING SEAGRASSES IN WALLIS LAKE, AUSTRALIA“. In Proceedings of the Second International Workshop on the Multitemp 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702630_0031.
Der volle Inhalt der QuelleEstes, Maurice G., Mohammad Al-Hamdan, Ron Thom, Dale Quattrochi, Dana Woodruff, Chaeli Judd, Jean Ellis, Brian Watson, Hugo Rodriguez und Hoyt Johnson. „Watershed and hydrodynamic modeling for evaluating the impact of land use change on submerged aquatic vegetation and seagrasses in Mobile Bay“. In OCEANS 2009. IEEE, 2009. http://dx.doi.org/10.23919/oceans.2009.5422399.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Seagrasses"
Kyla Richards, Kyla Richards. Could Hawaii seagrasses be facing extinction? Experiment, April 2022. http://dx.doi.org/10.18258/26159.
Der volle Inhalt der QuelleINTERIM BRIGADE COMBAT TEAM FORT LEWIS WA. Evaluation of the Use of Grid Platforms to Minimize Shading Impacts to Seagrasses. Fort Belvoir, VA: Defense Technical Information Center, Mai 2001. http://dx.doi.org/10.21236/ada394903.
Der volle Inhalt der QuelleDecho, Alan W. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada628298.
Der volle Inhalt der QuelleDecho, Alan W. COBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630366.
Der volle Inhalt der QuelleZimmerman, Richard C. Radiative Transfer in Seagrass Canopies. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629371.
Der volle Inhalt der QuelleZimmerman, Richard C. Radiative Transfer in Seagrass Canopies. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630542.
Der volle Inhalt der QuelleKoch, Evamaria W., Larry P. Sanford, Shih-Nan Chen, Deborah J. Shafer und Jane M. Smith. Waves in Seagrass Systems: Review and Technical Recommendations. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada458760.
Der volle Inhalt der QuelleDavis, Andy, Michael Feeley, Mario Londoño, Lee Richter, Judd Patterson und Andrea Atkinson. South Florida/Caribbean Network seagrass community monitoring: Protocol narrative—version 1.1. National Park Service, Juli 2022. http://dx.doi.org/10.36967/2293388.
Der volle Inhalt der QuelleEisemann, Eve, Safra Altman, Damarys Acevedo-Mackey und Molly Reif. Relating seagrass habitat to geomorphology and substrate characteristics around Ship Island, MS. Engineer Research and Development Center (U.S.), Juni 2019. http://dx.doi.org/10.21079/11681/33023.
Der volle Inhalt der QuelleHarrison, P. G., und M. Dunn. Fraser River delta seagrass ecosystems, their distributions and importance to migratory birds. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2004. http://dx.doi.org/10.4095/215808.
Der volle Inhalt der Quelle