Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Scratch tests“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Scratch tests" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Scratch tests"
Shi, Xin Hong, und Mei Juan Shan. „Effect of Scratch Depths on Fatigue Properties of PMMA for Aircraft Canopies“. Applied Mechanics and Materials 687-691 (November 2014): 81–84. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.81.
Der volle Inhalt der QuelleShi, Xin Hong, und Mei Juan Shan. „Effect of Scratch Depths on Tensile Strength of PMMA for Aircraft Canopies“. Advanced Materials Research 1056 (Oktober 2014): 8–11. http://dx.doi.org/10.4028/www.scientific.net/amr.1056.8.
Der volle Inhalt der QuelleZhao, Xu, Yadong Gong, Ming Cai und Bing Han. „Numerical and Experimental Analysis of Material Removal and Surface Defect Mechanism in Scratch Tests of High Volume Fraction SiCp/Al Composites“. Materials 13, Nr. 3 (10.02.2020): 796. http://dx.doi.org/10.3390/ma13030796.
Der volle Inhalt der QuelleDuan, Miaomiao, Zhufeng Yue und Qianguang Song. „Effect of Superficial Scratch Damage on Tension Properties of Carbon/Epoxy Plain Weave Laminates“. Advances in Civil Engineering 2021 (31.03.2021): 1–8. http://dx.doi.org/10.1155/2021/5590448.
Der volle Inhalt der Quelleda Silva, Dayanne Lopes, Emanuel Santos, Sérgio de Souza Camargo und Antônio Carlos de Oliveira Ruellas. „Infrared spectroscopy, nano-mechanical properties, and scratch resistance of esthetic orthodontic coated archwires“. Angle Orthodontist 85, Nr. 5 (24.11.2014): 777–83. http://dx.doi.org/10.2319/070314-472.1.
Der volle Inhalt der QuelleZhang, Xianlei, Kefan Jiao, Shaoshuai Ma und Yunyun Wu. „Effect of Scratches on Mechanical Properties and Impermeability of PVC-P Geomembranes“. Polymers 17, Nr. 3 (22.01.2025): 277. https://doi.org/10.3390/polym17030277.
Der volle Inhalt der QuelleLeung, H. M., und Sujeet K. Sinha. „Scratch and indentation tests on seashells“. Tribology International 42, Nr. 1 (Januar 2009): 40–49. http://dx.doi.org/10.1016/j.triboint.2008.05.015.
Der volle Inhalt der QuelleLin, Jeen-Shang, und Yaneng Zhou. „Can scratch tests give fracture toughness?“ Engineering Fracture Mechanics 109 (September 2013): 161–68. http://dx.doi.org/10.1016/j.engfracmech.2013.06.002.
Der volle Inhalt der QuelleRichard, Thomas, Fabrice Dagrain, Edmond Poyol und Emmanuel Detournay. „Rock strength determination from scratch tests“. Engineering Geology 147-148 (Oktober 2012): 91–100. http://dx.doi.org/10.1016/j.enggeo.2012.07.011.
Der volle Inhalt der QuellePatzelt, B., und U. Hemmann. „Scratch-Tests zur Untersuchung der Abrasionsbeständigkeit“. Materialwissenschaft und Werkstofftechnik 28, Nr. 10 (Oktober 1997): 500–504. http://dx.doi.org/10.1002/mawe.19970281013.
Der volle Inhalt der QuelleDissertationen zum Thema "Scratch tests"
Krupicka, Andreas. „Use and interpretation of scratch tests on organic coatings“. Doctoral thesis, KTH, Polymer Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3357.
Der volle Inhalt der QuelleAkono, Ange-Therese. „Scratch tests : a new way of evaluating the fracture toughness of materials“. Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/64571.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 126-130).
This thesis develops, validates and implements a fracture mechanics model for the assessment of the fracture toughness of materials from scratch tests. Dimensional Analysis highlights two major processes at work during scratch tests: plastic yielding and fracture dissipation. An original set-up of controlled laboratory tests on paraffin wax allows us to identify fracture processes as predominant. An analytical model for scratch tests with a rectangular blade and a back-rake angle is then developed. This model applies to linear elastic isotropic brittle materials and links the fracture toughness to the average horizontal and vertical forces recorded in the scratch test, and to the width and depth of the scratch. Finite Element simulation show that the model is highly accurate for back-rake angles smaller than 25'. From the model, an inverse technique to predict the fracture toughness is developed and implemented. This technique is validated for scratch tests on cement paste, Jurassic limestone, red sandstone and Vosges sandstone. and applied to oil cements hydrated at high temperature and pressure. The application shows that the scratch tests is highly reproducible. almost non-destructive, and not more sophisticated than classical strength-of-materials tests; which makes this *old' technique highly attractive for both materials research and industrial applications.
by Ange-Therese Akono.
S.M.
Seriacopi, Vanessa. „Evaluation of abrasive mechanisms in metallic alloys during scratch tests: a numerical-experimental study in micro-scale“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-12032018-144239/.
Der volle Inhalt der QuelleA abrasão pode ser tanto tratada do ponto de vista de processos de manufatura e geração de características superficiais distintas em peças e componentes, quanto pode ser abordada em termos de desgaste e falha em diferentes ferramentas aplicadas em processos de fabricação. A presente tese remete ao desenvolvimento de um modelo numérico pelo Método dos Elementos Finitos (MEF), validado por ensaios experimentais, com o objetivo de avaliar influências de aspectos microestruturais na abrasão de ligas metálicas. Portanto, o objetivo desta tese é focado na construção de regras que auxiliem no projeto de materiais dúcteis para terem resistência ao corte. Independentemente da aplicação, os estudos da ocorrência dos micro-mecanismos de abrasão incorporam propriedades mecânicas e de dano dos materiais e suas fases. A avaliação do micro-sulcamento ao micro-corte foi realizada a partir de um estudo simplificado de abrasão, considerando o riscamento de microestruturas por um único abrasivo. Dessa forma, ensaios de riscamento em micro-escala aplicando força normal constante dentro de uma faixa específica. Em adição, as caracterizações das amostras são realizadas a partir de técnicas de microscopia óptica e eletrônica, interferometria óptica, dureza convencional e indentação instrumentada. Por meio da abordagem numérica desenvolvida, os principais resultados obtidos foram: (a-) in termos de coeficiente de atrito aparente (COF), as divergências numérica e experimental encontradas foram decorrentes principalmente do efeito da adesão, anisotropia, contornos de grão e maclação que não foram levadas em conta na simulação; (b-) os precipitados duros tendem a ter efeito predominante sobre a matriz no que diz respeito ao COF aparente, ao passo que a influência da matriz é predominante sobre o comportamento dos precipitados moles; (c-) como consequência das reduções de energia de deformação e força tangencial, o COF local tende a ser diminuído quando o abrasivo passa por precipitados duros durante o riscamento; (d-) os resultados numéricos de profundidade de penetração média e volume removido total são consistentes com os resultados experimentais; (e-) não há uma transição marcante de micro-mecanismo em função de coeficiente de desgaste dimensional em função da carga, indicando uma predominância de um certo micro-mecanismo em um dado risco e, não ocorrendo transições bruscas; (f-) precipitados duros, em geral, diminuem a profundidade de penetração local e, assim, eles reduzem o volume removido e aumentam a energia específica; (g-) para a faixa de força normal avaliada, os precipitados moles seguiram o comportamento de remoção de material de sua matriz, mas podem apresentar oscilações na energia específica local nas condições menos severas de abrasão; e, por fim, (h-) o mapa de resistência à abrasão x dureza após deformação/ângulo de ataque é uma importante ferramenta para definir efeitos dominantes de propriedades mecânicas (dúctil e frágil) na microestrutura submetida à abrasão, e faz o delineamento de fronteiras de micro-mecanismos abrasivos.
Bernardes, Rodrigues Guilherme. „Friction anisotropy of metallic thin films deposited by Glancing Angle Deposition (GLAD) : Morphological and crystallographic aspects“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD065.
Der volle Inhalt der QuelleOne promising technique for introducing friction anisotropy in a surface is the Glancing Angle Deposition (GLAD). This method has demonstrated a wide range of possibilities for creating films with diverse morphologies and structural characteristics, which may induce anisotropy in various physical properties. However, the study of friction anisotropy in GLAD films remains limited, potentially leading to the underutilization of this technique in tribological applications. In this context, this thesis aims to investigate the potential use of GLAD to induce friction anisotropy, with a particular focus on the influence of morphological and crystallographic factors. Two metals, tungsten (W) and molybdenum (Mo), were selected for deposition under varying conditions. Scratch tests were conducted with different normal loads and scratching directions to determine whether friction anisotropy could be consistently achieved and how it manifests. The results indicate that not only is it possible to obtain friction anisotropy through GLAD, but also that different types of anisotropy can be observed. This anisotropic behavior seems to be primarily governed by the film’s morphology, particularly through the control of plastic deformation and column-column interactions. Furthermore, the type of material and deposition angle were found to significantly influence friction anisotropy, with Mo films exhibiting more complex anisotropic characteristics than W films. Although the significant impact of morphology on the behavior of most films was evident, a Mo film demonstrated that other factors may also contribute to atypical frictional responses
Damarla, Gowrisankar. „Determination of Wear in Polymers Using Multiple Scratch Test“. Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4627/.
Der volle Inhalt der QuelleBrowning, Robert Lee. „Quantitative characterization of polymer scratch behavior using a standardized scratch test“. Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/5988.
Der volle Inhalt der QuelleWong, Min Hao. „The development of scratch test methodology and characterization of surface damage of polypropylene“. Texas A&M University, 2003. http://hdl.handle.net/1969.1/1194.
Der volle Inhalt der QuelleBard, Romain (Romain M. ). „Analysis of the scratch test for cohesive-frictional materials“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61521.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 143-148).
In this thesis we develop analytical solutions for the relations between scratch hardness and strength properties of cohesive-frictional materials of the Mohr-Coulomb and Drucker-Prager type. Based on the lower-bound yield design approach, closed form solutions are derived for frictionless scratch devices, and validated against computational upper bound and elastoplastic Finite Element solutions. The influence of friction at the blade{material interface is also investigated, for which a simple computational optimization is proposed. The model is extended to porous cohesive-frictional materials through the use of a homogenized strength criterion based on the Linear Comparison Composite theory. Relations between scratch hardness, porosity and strength properties are proposed in the form of fitted functions. Illustrated for scratch tests on cement paste, we show that the proposed solutions provide a convenient way to determine estimates of cohesion and friction parameters from scratch data, and may serve as a benchmark to identify the relevance of strength models for scratch test analysis.
by Romain Bard.
S.M.
Atroshenkova, Anastasiia, und Анастасія Олександрівна Атрошенкова. „Strength properties investigation of glass by scratch test method“. Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/54160.
Der volle Inhalt der QuelleThis master thesis is dedicated to the сomparative study of glass strength using scratch test technique. The methods of investigation are scratch tests, nanoindentation and calculation methods for results analysis.
Ця магістерська робота присвячена порівняльному вивченню міцності скла за допомогою методики випробування дряпанням. Методами дослідження є скретч-тести, наноіндентування та розрахункові методи аналізу результатів.
Dyrda, Katia Marjolaine. „Adhesion characterization of hard ceramic coatings by the scratch test“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ37948.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Scratch tests"
E, Sliney Harold, Deadmore Daniel L und Lewis Research Center, Hrsg. Screen cage ion plating (SCIP) and scratch testing of polycrystaline aluminum oxide. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Den vollen Inhalt der Quelle findenE, Sliney Harold, Deadmore Daniel L und Lewis Research Center, Hrsg. Screen cage ion plating (SCIP) and scratch testing of polycrystaline aluminum oxide. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Den vollen Inhalt der Quelle findenEdge, M. D. Statistical Thinking from Scratch. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198827627.001.0001.
Der volle Inhalt der QuelleDutch, Jennifer Rachel. Look Who's Cooking. University Press of Mississippi, 2018. http://dx.doi.org/10.14325/mississippi/9781496818751.001.0001.
Der volle Inhalt der QuelleWright, Jonathan, und Dawson Barrett. Punks in Peoria. University of Illinois Press, 2021. http://dx.doi.org/10.5622/illinois/9780252043802.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Scratch tests"
Konin, Jeff G., Denise Lebsack, Alison R. Snyder Valier, Jerome A. “Jai” Isear und Holly Brader Marakovits. „Apley's Scratch Test“. In Special Tests for Orthopedic Examination, 36–38. 4. Aufl. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003526490-19.
Der volle Inhalt der QuelleLilleaas, August. „Automated Tests with jUnit 5“. In Pro Kotlin Web Apps from Scratch, 119–39. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9057-6_7.
Der volle Inhalt der QuelleDenkena, Berend, Luis de Leon, Marijke van der Meer und Analía Moral. „Scratch Tests on Natural Nacre - Reference for Implant Material“. In Friction, Wear and Wear Protection, 227–33. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch27.
Der volle Inhalt der QuelleKarimzadeh, A., und M. R. Ayatollahi. „Mechanical Properties of Biomaterials Determined by Nano-Indentation and Nano-Scratch Tests“. In Solid Mechanics and Its Applications, 189–207. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6919-9_10.
Der volle Inhalt der QuelleGitis, Norm V., Suresh Kuiry, Ilja Hermann und Jun Xiao. „Nano and Micro Indentation and Scratch Tests of Mechanical Properties of Thin Films“. In Advanced Tribology, 489–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03653-8_152.
Der volle Inhalt der QuelleKästner, F., und K. M. de Payrebrune. „Physical Modeling of Grinding Forces“. In Proceedings of the 3rd Conference on Physical Modeling for Virtual Manufacturing Systems and Processes, 70–89. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35779-4_5.
Der volle Inhalt der QuelleSingh, Jitendra Kumar, U. S. Rao und Ram Pyare. „Study of Traction Forces at Elevated Temperatures During Micro-Scratch Tests on 45S5 Bioglass“. In Lecture Notes in Mechanical Engineering, 565–75. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7709-1_57.
Der volle Inhalt der QuelleMüller, Tobias, Daisy Nestler, Thomas Lampke und Bernhard Wielage. „Numerical Simulation of Scratch Tests for the Verification of Material Models for Particle-Reinforced Coatings“. In Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives, 323–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34471-8_26.
Der volle Inhalt der QuelleGallego, Antolino, Jose F. Gil, J. M. Vico, Enrique Díaz Barriga-Castro, J. E. Ruzzante und Rosa Piotrkowski. „Wavelet Transform and Bispectrum Applied to Acoustic Emission Signals from Adherence Scratch-Tests on Corroded Galvanized Coatings“. In Advanced Materials Research, 83–88. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-420-0.83.
Der volle Inhalt der QuelleLee, Da-Jeong, Seung-Won Seo, Hyung-JunYoon, Hye-Lee Kim, Jung-Suk Han und Dae-Joon Kim. „Application of Scratch Hardness Tests for Evaluation of Partially-Sintered Zirconia CAD/CAM Blocks for All-Ceramic Prosthesis“. In Ceramic Transactions Series, 149–53. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118771587.ch14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Scratch tests"
Dutt, Shreya. „Detecting Food Allergies Through Scratch Testing and Blood Tests“. In 2024 IEEE Integrated STEM Education Conference (ISEC), 1. IEEE, 2024. http://dx.doi.org/10.1109/isec61299.2024.10665292.
Der volle Inhalt der QuelleMercier, Christian, und Alexandre Gierczynski. „HCE Kerosene Piston Engine Light Helicopter Demonstrator Results“. In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12143.
Der volle Inhalt der QuelleKus, Adrian, Sascha Schneider, Martin Hollands, Raphael Rammer, Oliver Dieterich und Martijn Priems. „GRC1: An Advanced Five-Bladed Bearingless Main Rotor Dynamics and Acoustics from Draft to Flight Test“. In Vertical Flight Society 74th Annual Forum & Technology Display, 1–13. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12754.
Der volle Inhalt der QuelleMarple, B. R., H. M. Hawthorne und Y. Xie. „Characterization of Nanostructured and Conventional Cermet Coatings by Controlled Scratch Testing: Correlation with Abrasion and Hardness Tests“. In ITSC2004, herausgegeben von Basil R. Marple und Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0846.
Der volle Inhalt der QuelleSikora, Janusz, und Daniel Pieniak. „TESTS OF SCRATCH RESISTANCE OF POLYMER MATERIAL SURFACES“. In 14th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control. Athens: Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, 2021. http://dx.doi.org/10.7712/140121.7966.18360.
Der volle Inhalt der QuelleByon, Eungsun, Soo-Wohn Lee, Junya Kitamura und Kenneth Holmberg. „Adhesion/Cohesion Strength of Plasma Sprayed Ceramic Coatings by Scratch Testing On Cross-Section“. In ITSC2013, herausgegeben von R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, G. Mauer, A. McDonald und F. L. Toma. ASM International, 2013. http://dx.doi.org/10.31399/asm.cp.itsc2013p0516.
Der volle Inhalt der QuelleOvaert, Timothy C., und B. R. Kim. „Estimation of Polymer Coating Scratch Tensile Strength by Nano-Indentation, Micro-Scratch Testing, and Finite Element Modeling“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63700.
Der volle Inhalt der QuelleMohammadi, Hossein, und John A. Patten. „Scratch Tests on Granite Using Micro-Laser Assisted Machining Technique“. In ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9327.
Der volle Inhalt der QuelleValeeva, Irina, und Ivan Goroshko. „Finite element analysis of scratch test of films on substrate“. In IXth INTERNATIONAL SAMSONOV CONFERENCE “MATERIALS SCIENCE OF REFRACTORY COMPOUNDS”. Frantsevich Ukrainian Materials Research Society, 2024. http://dx.doi.org/10.62564/m4-iv1352.
Der volle Inhalt der QuelleMenezes, Pradeep L., Kishore und Satish V. Kailas. „Effect of Directionality of Grinding Marks on Friction at Different Surface Roughness Using Inclined Scratch Test“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64000.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Scratch tests"
Alizadeh, Philipp, Kevin Oberle und Rainer Dahlmann. Process transfer of PECVD gas barrier coatings between PE-HD and PP hollow bodies. Universidad de los Andes, Dezember 2024. https://doi.org/10.51573/andes.pps39.gs.nn.2.
Der volle Inhalt der QuelleLim, Hannah, John Curry und Michael Dugger. Improved Throughput and Analysis of Scratch Test Results via Automation and Machine Learning. Office of Scientific and Technical Information (OSTI), Februar 2022. http://dx.doi.org/10.2172/1861003.
Der volle Inhalt der QuelleWongkasemjit, Sujitra. Comparison of titanium dioxide/silicon dioxide/zirconium dioxide synthesized via sol-gel process to be used as lens protection : final report. Chulalongkorn University, 2004. https://doi.org/10.58837/chula.res.2004.97.
Der volle Inhalt der QuellePinkus, Alan R., und Martha A. Hausmann. Interlaboratory Study (ILS) For F 428-83, The Standard Test Method for Intensity of Scratches on Aerospace Glass Enclosures. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada416229.
Der volle Inhalt der QuellePinkus, Alan R., und Martha A. Hausmann. Interlaboratory Study (ILS) for F 548-01, The Standard Test Method for Intensity of Scratches on Aerospace Transparent Plastics. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada416273.
Der volle Inhalt der QuelleTurner, Nigel E., Nicolas Trajtenberg, Steve Cook, Olga Sanchez de Ribera, Jing Shi und Henrietta Bowden-Jones. A health inequality examination of problem gambling, substance abuse, mental health, and poverty in the United Kingdom; A secondary analysis and stakeholder interviews. Greo Evidence Insights, 2023. https://doi.org/10.33684/2024.003.
Der volle Inhalt der Quelle