Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SAMDH1“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SAMDH1" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SAMDH1"
Ahn, Jinwoo, Caili Hao, Junpeng Yan, Maria DeLucia, Jennifer Mehrens, Chuanping Wang, Angela M. Gronenborn und Jacek Skowronski. „HIV/Simian Immunodeficiency Virus (SIV) Accessory Virulence Factor Vpx Loads the Host Cell Restriction Factor SAMHD1 onto the E3 Ubiquitin Ligase Complex CRL4DCAF1“. Journal of Biological Chemistry 287, Nr. 15 (23.02.2012): 12550–58. http://dx.doi.org/10.1074/jbc.m112.340711.
Der volle Inhalt der QuelleMartin-Gayo, Enrique, Taylor Hickman, Dina Pimenova, Florencia Pereyra, Eric Rosenberg, Mathias Lichterfeld und Xu Yu. „Cell-intrinsic HIV-1 immune responses in conventional dendritic cells from HIV-1 elite controllers (P6171)“. Journal of Immunology 190, Nr. 1_Supplement (01.05.2013): 118.9. http://dx.doi.org/10.4049/jimmunol.190.supp.118.9.
Der volle Inhalt der QuelleAsadian, Peyman, und Dorothee Bienzle. „Interferon γ and α Have Differential Effects on SAMHD1, a Potent Antiviral Protein, in Feline Lymphocytes“. Viruses 11, Nr. 10 (09.10.2019): 921. http://dx.doi.org/10.3390/v11100921.
Der volle Inhalt der QuelleSilberberg, Gilad, Bandana Vishwakarama, Brandon Walling, Chelsea Riveley, Alessandra Audia, Marianna Zipeto, Ido Sloma, Amy Wesa und Michael Ritchie. „Abstract 3907: A pheno-multiomic integration analysis of primary samples of acute myeloid leukemia reveals biomarkers of cytarabine resistance“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 3907. http://dx.doi.org/10.1158/1538-7445.am2022-3907.
Der volle Inhalt der QuelleChen, Shuliang, Serena Bonifati, Zhihua Qin, Corine St. Gelais, Karthik M. Kodigepalli, Bradley S. Barrett, Sun Hee Kim et al. „SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways“. Proceedings of the National Academy of Sciences 115, Nr. 16 (02.04.2018): E3798—E3807. http://dx.doi.org/10.1073/pnas.1801213115.
Der volle Inhalt der QuelleKokaraki, Georgia, Ioanna Xagoraris, Pedro Farrajota Neves Da Silva, Lesley Ann Sutton, Raul Maia Falcão, Jorge Estefano Santana de Souza, Anders Österborg, Valtteri Wirta, Richard Rosenquist Brandell und Georgios Z. Rassidakis. „Mutations of the Novel Tumor Suppressor Gene SAMHD1 Are Frequent and Correlate with Decreased Protein Expression in Peripheral T-Cell Lymphomas (PTCL)“. Blood 138, Supplement 1 (05.11.2021): 3515. http://dx.doi.org/10.1182/blood-2021-147428.
Der volle Inhalt der QuelleXu, Bowen, Qianyi Sui, Han Hu, Xiangjia Hu, Xuchang Zhou, Cheng Qian und Nan Li. „SAMHD1 Attenuates Acute Inflammation by Maintaining Mitochondrial Function in Macrophages via Interaction with VDAC1“. International Journal of Molecular Sciences 24, Nr. 9 (26.04.2023): 7888. http://dx.doi.org/10.3390/ijms24097888.
Der volle Inhalt der QuellePlitnik, Timothy, Mark E. Sharkey, Bijan Mahboubi, Baek Kim und Mario Stevenson. „Incomplete Suppression of HIV-1 by SAMHD1 Permits Efficient Macrophage Infection“. Pathogens and Immunity 3, Nr. 2 (06.12.2018): 197. http://dx.doi.org/10.20411/pai.v3i2.263.
Der volle Inhalt der QuelleFelip, Eudald, Lucía Gutiérrez-Chamorro, Maica Gómez, Edurne Garcia-Vidal, Margarita Romeo, Teresa Morán, Laura Layos et al. „Modulation of DNA Damage Response by SAM and HD Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase (SAMHD1) Determines Prognosis and Treatment Efficacy in Different Solid Tumor Types“. Cancers 14, Nr. 3 (27.01.2022): 641. http://dx.doi.org/10.3390/cancers14030641.
Der volle Inhalt der QuelleQin, Zhihua, Serena Bonifati, Corine St. Gelais, Tai-Wei Li, Sun-Hee Kim, Jenna M. Antonucci, Bijan Mahboubi et al. „The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells“. Journal of Biological Chemistry 295, Nr. 6 (30.12.2019): 1575–86. http://dx.doi.org/10.1074/jbc.ra119.010360.
Der volle Inhalt der QuelleDissertationen zum Thema "SAMDH1"
Martin, Michaël. „Mécanisme moléculaire de l'antagonisme du complexe HUSH par les protéines lentivirales Vpx et Vpr“. Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5160.
Der volle Inhalt der QuelleHIV-1 and HIV-2, lentiviruses responsible for AIDS, appeared in humans after cross-species transmissions from simian viruses (SIV). In addition to their structural and regulatory proteins, lentiviruses encode auxiliary proteins that promote viral replication in the host cell by counteracting antiviral cellular factors, called restriction factors. The mechanism of action of these viral auxiliary proteins often relies on the hijacking of Ubiquitin-Ligase complexes, a mechanism widely used by various pathogens, to degrade host cell proteins. This mechanism is used by the Vpx protein, expressed only by HIV-2 (and not by HIV-1), which induces the degradation of SAMDH1, a restriction factor blocking the reverse transcription step. Thus, Vpx molecularly bridges the DCAF1 adaptor of the Cul4A-DDB1(DCAF1) Ubiquitin-Ligase complex with SAMHD1, resulting in ubiquitination and degradation of SAMHD1. In 2018, our team showed that Vpx induces the degradation of an additional cellular factor: the HUSH complex, composed of TASOR, MPP8 and Periphilin. This complex is involved in the epigenetic repression not only of many cellular genes, retro-transposable elements and endogenous retroviruses, but also of the HIV genome integrated into the infected cell. By degrading HUSH, Vpx promotes viral expression. In this context, the objectives of my thesis were to: (i) Determine whether HUSH degradation mechanism induced by HIV-2 Vpx was identical to SAMHD1 degradation mechanism. I was able to highlight important differences between the two mechanisms although Vpx uses, in both cases, the same Ubiquitin-Ligase adaptor, DCAF1 (main focus of the thesis work, submitted article). (ii) Characterize the molecular determinants involved in the antagonism of HUSH by other lentiviral proteins. First, we wanted to know if different Vpx-related viral proteins, in various simian virus species, had the same capacity to degrade the HUSH complex. This allowed us to reveal a lentiviral species-specificity of HUSH complex antagonism, a major characteristic of restriction factors (contribution to Chougui et al., Nature microbiology, 2018). Secondly, this led me to start studying the viral determinants of these Vpx-related proteins, such as the Vpr proteins from different strains of SIVagm (infecting the African green monkey) that present different phenotypes regarding both SAMHD1 or HUSH degradation (work in progress). All the results allowed us to better characterize the mechanism of HUSH antagonism by Vpx/Vpr lentiviral proteins, and to provide the first molecular tools to differentiate HUSH antagonism from SAMHD1 antagonism in primary cells. In the future, these data may help to better understand how various lentiviral proteins have adapted to their different cellular substrates (and vice versa) along evolution. Finally, targeting HUSH through the identification of interaction or degradation determinants could be interesting for the development of new therapeutic targets
Hani, Lylia. „Caractérisation et rôle des lymphocytes T CD4+ mémoires SAMHD1low au cours de l'infection par le VIH-1“. Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC0087/document.
Der volle Inhalt der QuelleWe have previously reported the presence of memory CD4+ T cells that display low levels of SAMHD1 (SAMHD1low ) enriched in Th17 and Tfh cells. Here we investigated gene expression profile and the size and composition of HIV DNA population in SAMHD1 low cells.A total of 36 individuals on c-ART (median: 7y) with median CD4+ counts and nadir of 549 cells/ul and 210 cells/ul respectively, including 6 elite controllers (EC, CD4+: 900 cells/ul) and 8 healthy donors were studied. Blood memory CD4+ CD45RO+ SAMHD1low, CD45RO+ SAMHD1high and naive CD45RO- SAMHD1high cells were sorted. Cell associated HIV-1 DNA levels were quantified (HIV DNA Cell, Biocentric) and ultra-deep-sequencing (UDS, 454/Roche) of partial env (C2/V3) HIV-1 DNA was performed. Gene expression profile on sorted cells was deternined with RNA-Sequencing (Illumina RNASeq technology). Levels of HIV-1 DNA were significantly higher in memory SAMHD1low cells compared to SAMHD1high cells (4.5 [3.1-6.2] vs 3.8 [2.9-5.7] log/10 6 cells, respectively, p=0.02) among c-ART individuals, while naïve CD45RO- SAMHD1high showed lower levels (3.1 [1.6-4.4]). EC exhibited low HIV-1 DNA level in both SAMHD1low and SAMHD1high (1.6 and 2.3 log/10 6 cells respectively p>0.05). Naïve CD45RO - SAMHD1 high cells from EC showed lower DNA compared to naïve cells from c-ART pts (1.6 and 3.1 log/10 6 cells, respectively, p=0.01). Phylogenetic analyses revealed well-segregated HIV-DNA populations between subsets with significant compartmentalization between SAMHD1low and SAMHD1high cells in all but 2 participants (p<0.001) and limited viral exchange. Moreover SAMHD1low cells exhibited a distinct gene profile as compared to SAMHD1high allowing thus further characterisation of these cells.This pilot study revealed distinct HIV DNA populations in size and composition associated with unique genes profile in memory SAMHD1low cells. We show that memory SAMHD1low cells exhibit distinct genes profile which segregates them from the SAMHD1 high counterpart, and contain the highest level of HIV-1 DNA. We reveal distinct/well-segregated HIV-1 DNA populations in both subsets, suggesting minimal viral exchange
Valverde, Estrella Lorena. „TREX1 and SAMHD1, and Aicardi-Goutières Syndrome“. Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/291940.
Der volle Inhalt der QuelleLa síndrome d'Aicardi-Goutières (AGS), és una malaltia autoimmunitària recessiva que mimetitza una infecció vírica intrauterina, i la qual és caracteritzada per calcificacions intracranials, atròfia cerebral i augment d'IFN-alfa al líquid cefaloraquidi. L'AGS és una malaltia genètica heterogènia associada amb mutacions al gen que codifica per a l'exonucleasa TREX1, a qualsevol dels gens codificants per a les components de la ribonucleasa RNASE H2, a la fosfohidrolasa SAMHD1, a la deaminasa ADAR1 o al sensor citoplasmàtic MDA5. El coneixement d'aquestes funcions és fonamental per tal d'entendre la patogènesi de l'AGS. En aquesta tesi s'ha aprofundit en el coneixement del mecanisme regulador de la transcripció de Samhd1. Hem vist que Samhd1 es troba expressat en diferents òrgans sense necessitat de cap estímul previ, com el pàncrees, l’intestí prim i els macròfags derivats de moll d’os, i en diferents quantitats en altres òrgans de ratolí. Donada la important afectació que té l’AGS al cervell, també es va analitzar la seva expressió en neurones i cèl·lules de la micròglia. També hem vist que Samhd1 es troba induït en presència de citocines proinflamatòries, però no es troba afectada la seva expressió en presència de citocines antiinflamatòries així com tampoc en presència de TNF-gamma. Utilitzant macròfags derivats de ratolins deficients en STAT1, hem pogut demostrar que l’expressió de Samhd1 per IFN-alfa és a través d’STAT1, ja que la seva expressió es troba completament reprimida en aquestes cèl·lules. Ens vam centrar en la inducció de Samhd1 i per la seva comprensió vam focalitzar en l’estudi del seu promotor. Es van clonar 1500 parells de bases del promotor de Samhd1 en un plasmidi reporter de luciferasa, i es va veure que aquest fragment era suficient per induir l’expressió de luciferasa. A partir d’aquest constructe, es van realitzar llavors noves construccions delecionant cada vegada una regió del promotor. Es va veure que en delecionar una regió específica de 161pb, l’expressió de luciferasa es trobava completament reprimida, indicant que aquesta regió del promotor és crítica per a la inducció de Samhd1. Experiments de retard en gel (EMSA) van mostrar que Samhd1 es troba reprimit en condicions basals per una proteïna que no hem arribat a caracteritzar, i experiments de precipitació de cromatina (ChIP) van mostrar que IRF1 es troba involucrada en la inducció de Samhd1 per IFN-alfa. La nostra hipòtesi doncs, és que l’expressió de Samhd1 té un mecanisme de regulació doble: en condicions basals es troba reprimit i en presència d’IFN-alfa s’indueix una via de senyalització independent d’STAT1 que fa saltar el complex repressor del promotor, i també s’indueix una via de senyalització dependent d’STAT1, que indueix l’expressió d’IRF1 i que activa la transducció de Samhd1. Fins ara no hem caracteritzat la proteïna o complex de proteïnes que reprimeix l’expressió de Samhd1 en condicions basals, però s’està investigant mitjançant anàlisis proteòmics. En aquesta tesi també s’ha fet la construcció d’un ratolí KO condicional per a TREX1. Una vegada aconseguit aquest animal condicional, el qual conté el gen de Trex1 flanquejat per dues dianes LoxP, aquest s’està encreuant amb diferents soques que expressen CRE sota regulació de diferents Socs2 promotors. Els ratolins homozigots KO i que expressen CRE, tenen un fenotip similar al fenotip que mostren els ratolins KO totals de TREX1. Estem en el procés d’obtenció de ratolins homozigots KO i que expressen CRELysM però, donat a problemes amb la penetrància d’aquest al·lel, hem tingut algunes dificultats. Els resultats d’aquesta tesi en conjunt poden ajudar a entendre una mica més el funcionament de l'AGS.
Antonucci, Jenna Marie. „Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1“. The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524006072232491.
Der volle Inhalt der QuelleSébert, Marie. „Génétique et évolution clonale des syndromes d’insuffisance médullaire“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC271.
Der volle Inhalt der QuelleInherited bone marrow failure (IBMF) syndromes are heterogeneous diseases related to germ line mutations causing deficient hematopoiesis in mutated patients. Mutations involve several families of genes with different biological pathways driving the bone marrow failure. Most germ line genetic BMF disorders are characterized by a high propensity to clonal evolution and to develop MDS or AML. We used a whole-exome sequencing (WES) comprehensive analysis on fibroblast DNA samples from 179 patients with BMF/MDS of unresolved inherited origin. We provided a molecular diagnosis for 86/179 BMF patients (48%) including several seldom-reported IBMF/MDS entities like SAMD9/SAMD9L, MECOM/EVI1, and ERCC6L2. In particular, we described a specific clonal evolution in patients having mutations in SAMD9 and SAMD9L.Fanconi anemia (FA) is the most common IBMF syndrome, caused by a germ line mutation in one gene of the FA pathway. DNA repair deficiency in patient’s FA cells leads to chromosomal instability, which sets the stage for clonal evolution with a specific pattern of chromosomal abnormalities. We used integrated clinical, next-generation genomic and functional studies on primary cells from a National cohort of 335 FA patients, including 98 with clonal evolution, to decipher the mechanisms of BM progression. While relatively few somatic point mutations were found, unbalanced translocations leading to gross chromosomal copy-number abnormalities were most prominent. Whole genome sequencing revealed an FA-specific signature in which microhomology-mediated end joining (MMEJ) or non homologous end joining (NHEJ) repair had mediated genome rearrangements, consistent with the constitutive homologous repair defect. Longitudinal studies confirmed the order of chromosomal events during FA patients oncogenesis: 1q+, 3q+, -7/del7q, del or RUNX1 mutations. A major initial step was duplication of chromosome 1q, resulting in strong expression of MDM4, a negative regulator of p53, which can be targeted by MDM4-inhibitors.IBMF are rare diseases and our study participated to describe new genetic and clinical entities. Studying the clonal evolution of IBMF syndromes can help to understand MDS and AML pathophysiology and lead to therapeutic target identification
Louis, Tania. „Étude des fonctions cellulaires de SAMHD1, facteur de restriction du VIH-1“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS050/document.
Der volle Inhalt der QuelleUnderstanding host pathogen interactions reveals not only important information regarding the replication cycle of the pathogen but it often leads to the discovery and better understanding of key biological processes of the host. The aim of my PhD was to decipher the cellular functions of the HIV-1 restriction factor SAMHD1. SAMHD1 (SAM domain and HD domain-containing protein 1) is expressed in most human tissues. This protein is able to hydrolyze cellular deoxyribonucleotides triphosphate (dNTP) and possesses a nuclease activity primarily against single stranded RNA. Mutations in SAMHD1 have been described in patients suffering from an auto-immune disease causing premature death of newborns. This phenotype suggests a role of SAMHD1 in the control of immune response. Moreover, SAMHD1 restricts HIV-1 in non-cycling cells. The HIV-2 accessory protein Vpx induces SAMHD1 degradation by the proteasome, conferring cell permissiveness to HIV. In fact, the antiviral activity of SAMHD1 has been extended to other viruses including Herpes Simplex Virus 1 and Hepatitis B virus. Nevertheless, the mechanism by which SAMHD1 restrict HIV replication is debated. It was initially thought to act by depleting the dNTP pool but recent studies highlighted a potential role of SAMHD1 nuclease function in degrading HIV-1 genomic RNA. Many studies aiming at understanding the antiviral activity of SAMHD1 are being pursued, whereas little is known about the cellular function of this protein. The fact that SAMHD1 is able to regulate the cellular dNTP pool and to interact with nucleic acids suggests a key role of this protein in cellular processes, such as DNA replication and repair. During my PhD, I showed that SAMHD1 modulates the cell cycle, as the overexpression of this protein slows down cell proliferation. I also observed that SAMHD1 overexpression increases cellular sensitivity to double strand DNA breaks-inducing agents. Moreover I discovered that, after double strand breaks induction, SAMHD1 is specifically regulated by phosphorylation on its threonine 592 and recruited at the damaged sites. Other studies confirmed the importance of SAMHD1 regulation along the cell cycle as its overexpression and depletion both decrease cell proliferation. In addition to my observations, some studies suggested that SAMHD1 is important to maintain genomic integrity, presumably through its implication in DNA repair. Altogether, these results promote SAMHD1 as a key player in cellular homeostasis. I additionally showed that SAMHD1 expression is reduced in 80% of patients suffering from chronic lymphocytic leukemia (CLL). SAMHD1 loss is therefore correlated to the development of a disease due to disturbances of cellular integrity. Looking at samples from different types of tumors, I showed that SAMHD1 loss is shared between all tested cancers, although at lesser extent than in CLL. My PhD work underlines the central role of SAMHD1 to maintain cellular integrity
Silva, Maria-João. „Role of CTF18 and SAMHD1 in human DNA replication and genome integrity maintenance“. Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20236.
Der volle Inhalt der QuelleS phase is a critical period of the cell cycle during which the genome is particularly vulnerable. The efficient duplication of eukaryotic genomes depends on the unperturbed progression of thousands of replication forks.The early stages of tumorigenesis are associated with spontaneous replication stress, characterized with a blockage of fork progression. Understanding how replication stress arises in normal cells and contributes to tumorigenesis is a major challenge in cancer research.My thesis work aims at understanding the regulation of replication fork progression by two different proteins, SAMHD1 and CTF18, which have important roles in various aspects of DNA metabolism.Faithful duplication of the genome depends on a balanced supply of deoxyribonucleoside triphosphates (dNTPs). Imbalanced dNTP pools decrease the fidelity of DNA polymerases and increase mutation rates. SAMHD1 was originally identified as a dNTP triphosphohydrolase. This enzyme is implicated in Aicardi-Goutières syndrome. It has also been identified as a component of the human innate immune system that restricts HIV-1 infection. Recently, SAMHD1 was shown to be involved in the regulation of dNTP pools in cultured human cells. This protein is maximally expressed during quiescence and minimally during S phase. However, the impact of SAMHD1 upon DNA replication has not been addressed. Using DNA fiber spreading, we found that SAMHD1 modulates the speed of fork progression. In addition to its dNTPase activity, SAMHD1 contains a putative 3'-5' exonuclease domain that cleaves both DNA and RNA in vitro. A growing body of evidence indicates that 3'-5' exonucleases are critical to ensure fork progression and the fidelity of DNA replication. Remarkably, we found that the exonuclease activity of SAMHD1 promotes backtracking at paused forks and is important for replication fork progression. We propose that this backtracking activity is important to remove miss-incorporated deoxynucleotides or ribonucleotides. Our finding may have implications for our understanding of the link between SAMHD1 and the Aicardi-Goutières syndrome.CTF18 is part of a RFC-like complex involved in sister chromatid cohesion (SCC). In human cells it has been suggested that CTF18 controls the progression of replication forks, presumably by promoting acetylation of the SMC3 cohesin at replication forks. However, several results indicate that the function of CTF18 is not restricted to the establishment of SCC. Indeed, our group has shown that the yeast Ctf18 is essential for activation of the replication checkpoint, independently of its role in SCC. In human, CTF18 also participates in the recruitment of PCNA, the processivity factor of DNA polymerases δ and ε. CTF18 also interacts with the translesion polymerase . The aim of my work was to characterize the role of CTF18 during DNA replication. Using DNA combing, we first noticed that replication fork speed is slower in CTF18-depleted cells under unperturbed conditions. Intriguingly, increased fork speed was observed in CTF18-depleted cells challenged with hydroxyurea (HU), which is reminiscent of the phenotype of SAMHD1-depleted cells. Using iPOND, we observed an accumulation of PCNA at replication forks in HU-treated CTF18-depleted cells. We also found that CTF18 depletion induces an accumulation of yH2AX, suggesting that CTF18 is required for genome stability. Finally, we observed that the resection mediated by SAMHD1 at paused forks does not occur in the absence of CTF18. Together, these data indicate that CTF18 acts upstream of SAMHD1 at stalled forks, presumably through the unloading of PCNA
Qin, Zhihua. „SAMHD1 Negatively Regulates the Innate Immune Responses to Inflammatory Stimuli and Viral Infection“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587587968104986.
Der volle Inhalt der QuelleCenker, Jennifer Jean. „DIFFERENTIAL HIV-1 SUSCEPTIBILITY OF PRIMARY MACROPHAGE POPULATIONS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1491656059069304.
Der volle Inhalt der QuelleWang, Feifei. „Comparison of Murine and Human SAMHD1’s Role in Retroviral Restriction and Cell Cycle Progression“. The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1448450028.
Der volle Inhalt der QuelleBücher zum Thema "SAMDH1"
Tripāṭhī, Nṛsiṃha. Svapna samādhi: Swapna samadhi. Kaṭaka: Bidyãpurĩ̄, 2014.
Den vollen Inhalt der Quelle findenSalmān, Ṭīpū. Samah davār (Panjāb) te aohde rang: Samha Dvar (Punjab) te ohdey rung. Lāhaur: Sanjh, 2019.
Den vollen Inhalt der Quelle findenYŏm, Sang-sŏp. Samdae. Sŏul Tʻŭkpyŏlsi: Yangudang, 1986.
Den vollen Inhalt der Quelle findenSamidha. Hyderabad: Orient Longman, 2008.
Den vollen Inhalt der Quelle findenSaurabha, Subhāsha. Samidhā. Dillī: Jayaśrī Prakāśana, 1989.
Den vollen Inhalt der Quelle finden1948-, Kwŏn Yŏng-min, Hrsg. Samdae. Sŏul: Minŭmsa, 1987.
Den vollen Inhalt der Quelle findenSamdae. Sŏul-si: Chisŏng ŭi saem, 1991.
Den vollen Inhalt der Quelle findenYŏm, Sang-sŏp. Samdae [oe]. Sŏul: Hagwŏn Chʻulpʻan Kongsa, 1987.
Den vollen Inhalt der Quelle findenZOGHBI, NAWAL EL. KHALAS SAMEHT . S.l: Midwesttapes, 2008.
Den vollen Inhalt der Quelle findenRiz̤vī, Nihāl. Mujhko samjho. Bārahbankī: Nihāl Riz̤vī, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "SAMDH1"
Marcaurelle, Roger. „Samādhi“. In Hinduism and Tribal Religions, 1382–85. Dordrecht: Springer Netherlands, 2022. http://dx.doi.org/10.1007/978-94-024-1188-1_1618.
Der volle Inhalt der Quellede Silva, Suresh, Corine St. Gelais, Nagaraja Tirumuru und Li Wu. „Counteraction of SAMHD1 by Vpx“. In Encyclopedia of AIDS, 1–11. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-9610-6_375-1.
Der volle Inhalt der Quellede Silva, Suresh, Corine St. Gelais, Nagaraja Tirumuru und Li Wu. „Counteraction of SAMHD1 by Vpx“. In Encyclopedia of AIDS, 385–94. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7101-5_375.
Der volle Inhalt der QuelleRao, K. Ramakrishna. „Yoga as Samādhi“. In Foundations of Yoga Psychology, 1–34. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5409-9_1.
Der volle Inhalt der QuellePflueger, Lloyd W. „Samādhi as True Death in the Yogasūtra“. In Death, Dying, and Mysticism, 203–18. New York: Palgrave Macmillan US, 2015. http://dx.doi.org/10.1057/9781137472083_13.
Der volle Inhalt der QuelleParanjpe, Anand. „The transformation of consciousness in Samādhi (I)“. In Understanding Yoga Psychology, 78–90. London: Routledge India, 2023. http://dx.doi.org/10.4324/9781003370697-6.
Der volle Inhalt der QuelleParanjpe, Anand. „The transformation of consciousness in Samādhi (II)“. In Understanding Yoga Psychology, 91–110. London: Routledge India, 2023. http://dx.doi.org/10.4324/9781003370697-7.
Der volle Inhalt der QuelleKhaslan, Zaki, Noor Hidayah Mohd Yunus, Mohd Shahrul Mohd Nadzir, Jahariah Sampe, Noorazlina Mohamad Salih und Kemal Maulana Alhasa. „IoT-Based Indoor Air Quality Monitoring System Using SAMD21 ARM Cortex Processor“. In Advanced Structured Materials, 245–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92964-0_24.
Der volle Inhalt der QuelleKolm, Serge-Christophe. „Happiness-Freedom: Who Suffers? From Dukkha to Samadhi“. In The Pursuit of Happiness and the Traditions of Wisdom, 23–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04744-7_3.
Der volle Inhalt der QuelleHankey, Alex. „A New Information Theory Explains Śūnya in Samādhi“. In Quantum Reality and Theory of Śūnya, 379–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1957-0_26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SAMDH1"
Margeli, Mireia, Eudald Felip, Lucia Gutierrez Chamorro, Eva Riveira, Laura Layos, Teresa Moran, Margarita Romeo, Anna Matinez-Cardús und Ester Ballana. „Abstract LB112: SAMHD1: A new Prognostic Marker in Breast Cancer (BC)“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-lb112.
Der volle Inhalt der QuelleKaushik, M. K., Pallavi Guda, Nikhila Yettapu, Premsai Talari, Neelima Mitta und Lavanya Ganta. „SAMIDHA –Onboard Digital Fuel Monitoring System“. In 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). IEEE, 2018. http://dx.doi.org/10.1109/iccsdet.2018.8821233.
Der volle Inhalt der QuelleMargeli, Mireia, Eudald Felip, Maica Gomez, Pedro Fernandez, Laia Pérez-Roca, Eva Riveira-Muñoz, Anna Martinez-Cardús et al. „Abstract P3-08-32: Predictive value of SAMHD1 expression in early relapse breast cancer“. In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p3-08-32.
Der volle Inhalt der QuelleBURLET, N., Y. LE GALL, S. DELAYES, S. DUGELAY und F. NOVELLA. „INTENSIVE RESOLUTION MEASUREMENT WITH THE SAMDIS MULTI-ASPECT SAS“. In Synthetic Aperture Sonar and Synthetic Aperture Radar 2023. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/15935.
Der volle Inhalt der QuelleBrand, Julia, Steve Madden, Andrei V. Rode, Ludovic Rapp und Alison Wain. „Femtosecond pulse laser cleaning of Makrana marble and semi- precious stones for the preservation of the Holy Samadh“. In IABSE Congress, New Delhi 2023: Engineering for Sustainable Development. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/newdelhi.2023.0372.
Der volle Inhalt der QuelleFelip, Eudald, Roger Badia, Mireia Margelí, Marc Castellví, Vanesa Quiroga, Iris Teruel, Beatriz Cirauqui et al. „Abstract P5-05-14: Cyclin-dependent kinases inhibitors improve antimetabolite drug potency depending on SAMHD1 expression“. In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p5-05-14.
Der volle Inhalt der QuelleBryant, Victoria, Jasmine Wong, Jason Schwartz, Tamara Lamprecht, Jing Ma, Charles Mullighan, Mignon Loh, Kevin Shannon und Jeffery Klco. „Abstract 2063:SAMD9/SAMD9Lmutations in familial monosomy 7“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2063.
Der volle Inhalt der QuelleSendon, C., Y. A. Collado und A. E. Esquibies. „De Novo Variant of the SAMD9 Gene: Mirage Syndrome“. In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5025.
Der volle Inhalt der QuelleDaddacha, Waaqo. „Abstract 1744: SAMHD1 expression and impact on clinical outcome in diffuse large B-cell lymphoma: a potential therapeutic target“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1744.
Der volle Inhalt der QuelleDaddacha, Waaqo. „Abstract 1744: SAMHD1 expression and impact on clinical outcome in diffuse large B-cell lymphoma: a potential therapeutic target“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1744.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "SAMDH1"
Malla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.205.
Der volle Inhalt der QuelleMalla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.244.
Der volle Inhalt der QuelleMalla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.245.
Der volle Inhalt der QuelleMalla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.205.
Der volle Inhalt der QuelleMalla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.244.
Der volle Inhalt der QuelleMalla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.245.
Der volle Inhalt der QuelleBhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.242.
Der volle Inhalt der QuelleBhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.203.
Der volle Inhalt der QuelleBhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.242.
Der volle Inhalt der QuelleBhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.203.
Der volle Inhalt der Quelle