Auswahl der wissenschaftlichen Literatur zum Thema „SAMDH1“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SAMDH1" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "SAMDH1"

1

Ahn, Jinwoo, Caili Hao, Junpeng Yan, Maria DeLucia, Jennifer Mehrens, Chuanping Wang, Angela M. Gronenborn und Jacek Skowronski. „HIV/Simian Immunodeficiency Virus (SIV) Accessory Virulence Factor Vpx Loads the Host Cell Restriction Factor SAMHD1 onto the E3 Ubiquitin Ligase Complex CRL4DCAF1“. Journal of Biological Chemistry 287, Nr. 15 (23.02.2012): 12550–58. http://dx.doi.org/10.1074/jbc.m112.340711.

Der volle Inhalt der Quelle
Annotation:
The sterile alpha motif and HD domain-containing protein-1 (SAMHD1) inhibits infection of myeloid cells by human and related primate immunodeficiency viruses (HIV and SIV). This potent inhibition is counteracted by the Vpx accessory virulence factor of HIV-2/SIVsm viruses, which targets SAMHD1 for proteasome-dependent degradation, by reprogramming cellular CRL4DCAF1 E3 ubiquitin ligase. However, the precise mechanism of Vpx-dependent recruitment of human SAMHD1 onto the ligase, and the molecular interfaces on the respective molecules have not been defined. Here, we show that human SAMHD1 is recruited to the CRL4DCAF1-Vpx E3 ubiquitin ligase complex by interacting with the DCAF1 substrate receptor subunit in a Vpx-dependent manner. No stable association is detectable with DCAF1 alone. The SAMHD1 determinant for the interaction is a short peptide located distal to the SAMHD1 catalytic domain and requires the presence of Vpx for stable engagement. This peptide is sufficient to confer Vpx-dependent recruitment to CRL4DCAF1 and ubiquitination when fused to heterologous proteins. The precise amino acid sequence of the peptide diverges among SAMHD1 proteins from different vertebrate species, explaining selective down-regulation of human SAMHD1 levels by Vpx. Critical amino acid residues of SAMHD1 and Vpx involved in the DCAF1-Vpx-SAMDH1 interaction were identified by mutagenesis. Our findings show that the N terminus of Vpx, bound to DCAF1, recruits SAMHD1 via its C terminus to CRL4, in a species-specific manner for proteasomal degradation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Martin-Gayo, Enrique, Taylor Hickman, Dina Pimenova, Florencia Pereyra, Eric Rosenberg, Mathias Lichterfeld und Xu Yu. „Cell-intrinsic HIV-1 immune responses in conventional dendritic cells from HIV-1 elite controllers (P6171)“. Journal of Immunology 190, Nr. 1_Supplement (01.05.2013): 118.9. http://dx.doi.org/10.4049/jimmunol.190.supp.118.9.

Der volle Inhalt der Quelle
Annotation:
Abstract Introduction: Recent data suggest that in most HIV-1-infected individuals, cell-intrinsic immune responses of conventional dendritic cells (cDC) are blocked by the host proteins Samhd1 and Trex1. Elite controllers (EC) control HIV-1 replication in the absence of treatment, but immune defense mechanisms in these patients are not well understood. Here, we investigated cell-intrinsic immune responses to HIV-1 in these specific patients. Methods: PBMC from EC, untreated chronic progressors (CP), HAART-treated and HIV-1 negative subjects were ex vivo infected with HIV-1. Expression of viral replication products, type I interferons, Samhd1 and Trex1 were analyzed by qPCR. Results: cDC from HIV-1 negative persons were moderately susceptible to HIV-1, while cDC from EC and CP supported HIV-1 replication very weakly. However, in CP, HIV-1 replication was blocked at the level of early reverse transcription, likely as a result of high-level Samdh1 expression, while In EC, reverse transcription was unaltered, and restriction of viral replication mostly occurred at the level of integration. Functionally, these altered patterns of viral restriction in cDC from EC were associated with increased cellular activation, secretion of type I interferons and improved abilities to prime T cell responses. Conclusion: cDC from EC can mount cell-intrinsic immune responses against HIV-1, which may support the generation of highly effective HIV-1-specific T cell responses in these patients.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Asadian, Peyman, und Dorothee Bienzle. „Interferon γ and α Have Differential Effects on SAMHD1, a Potent Antiviral Protein, in Feline Lymphocytes“. Viruses 11, Nr. 10 (09.10.2019): 921. http://dx.doi.org/10.3390/v11100921.

Der volle Inhalt der Quelle
Annotation:
Sterile alpha motif and histidine/aspartic domain-containing protein 1 (SAMHD1) is a protein with anti-viral, anti-neoplastic, and anti-inflammatory properties. By degrading cellular dNTPs to constituent deoxynucleoside and free triphosphate, SAMHD1 limits viral DNA synthesis and prevents replication of HIV-1 and some DNA viruses such as HBV, vaccinia, and HSV-1. Recent findings suggest SAMHD1 is broadly active against retroviruses in addition to HIV-1, such as HIV-2, FIV, BIV, and EIAV. Interferons are cytokines produced by lymphocytes and other cells that induce a wide array of antiviral proteins, including some with activity again lentiviruses. Here we evaluated the role of IFNs on SAMHD1 gene expression, transcription, and post-translational modification in a feline CD4+ T cell line (FeTJ) and in primary feline CD4+ T lymphocytes. SAMHD1 mRNA in FetJ cells increased in a dose-related manner in response to IFNγ treatment concurrent with increased nuclear localization and phosphorylation. IFNα treatment induced SAMHD1 mRNA but did not significantly alter SAMHD1 protein detection, phosphorylation, or nuclear translocation. In purified primary feline CD4+ lymphocytes, IL2 supplementation increased SAMHD1 expression, but the addition of IFNγ did not further alter SAMHD1 protein expression or nuclear localization. Thus, the effect of IFNγ on SAMHD1 expression is cell-type dependent, with increased translocation to the nucleus and phosphorylation in FeTJ but not primary CD4+ lymphocytes. These findings imply that while SAMH1 is inducible by IFNγ, overall activity is cell type and compartment specific, which is likely relevant to the establishment of lentiviral reservoirs in quiescent lymphocyte populations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Silberberg, Gilad, Bandana Vishwakarama, Brandon Walling, Chelsea Riveley, Alessandra Audia, Marianna Zipeto, Ido Sloma, Amy Wesa und Michael Ritchie. „Abstract 3907: A pheno-multiomic integration analysis of primary samples of acute myeloid leukemia reveals biomarkers of cytarabine resistance“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 3907. http://dx.doi.org/10.1158/1538-7445.am2022-3907.

Der volle Inhalt der Quelle
Annotation:
Abstract The overall survival of patients diagnosed with Acute Myeloid Leukemia (AML) remains low. While initial responses to therapy are favorable, the duration of response is short and overcoming therapeutic resistance has proven difficult. A better understanding of the tumor cell biology and resistance mechanisms may shed light onto novel therapeutic targets that improve long-term outcome. In this study, we performed an exhaustive analysis to include deep tumor phenotyping, drug sensitivity profiling and comprehensive omic characterization. These datasets were included in integrative pharmaco-phenotypic-multiomic analyses to identify targets and biomarkers associated with cellular phenotype and drug response. Our results reveal that the major cellular discriminant within the cellular phenotype is CD34 expression, which associates with a high PDK-mediated metabolic profile and cytarabine sensitivity. Tumors exhibiting cytarabine resistance associate with a CD34-negative cellular phenotype and molecular characteristics such as MYC copy number gain, and increased expression of SAMDH1, FBP1 and TYMP proteins. Citation Format: Gilad Silberberg, Bandana Vishwakarama, Brandon Walling, Chelsea Riveley, Alessandra Audia, Marianna Zipeto, Ido Sloma, Amy Wesa, Michael Ritchie. A pheno-multiomic integration analysis of primary samples of acute myeloid leukemia reveals biomarkers of cytarabine resistance [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3907.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Shuliang, Serena Bonifati, Zhihua Qin, Corine St. Gelais, Karthik M. Kodigepalli, Bradley S. Barrett, Sun Hee Kim et al. „SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways“. Proceedings of the National Academy of Sciences 115, Nr. 16 (02.04.2018): E3798—E3807. http://dx.doi.org/10.1073/pnas.1801213115.

Der volle Inhalt der Quelle
Annotation:
Sterile alpha motif and HD-domain–containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kokaraki, Georgia, Ioanna Xagoraris, Pedro Farrajota Neves Da Silva, Lesley Ann Sutton, Raul Maia Falcão, Jorge Estefano Santana de Souza, Anders Österborg, Valtteri Wirta, Richard Rosenquist Brandell und Georgios Z. Rassidakis. „Mutations of the Novel Tumor Suppressor Gene SAMHD1 Are Frequent and Correlate with Decreased Protein Expression in Peripheral T-Cell Lymphomas (PTCL)“. Blood 138, Supplement 1 (05.11.2021): 3515. http://dx.doi.org/10.1182/blood-2021-147428.

Der volle Inhalt der Quelle
Annotation:
Abstract Introduction: The SAM domain and HD domain 1 (SAMHD1) protein is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, which depletes the intracellular dNTP substrates and thus protects the host (human) cells from replication of viruses such as HIV. Mutations of SAMHD1 gene have been linked to Aicardi-Goutières syndrome (AGS). In lymphoid malignancies, SAMHD1 gene mutations have been detected in a subset of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) resulting in decreased SAMHD1 mRNA levels and also mantle cell lymphoma (MCL) among B-cell neoplasms as well as in a subset (20%) of T-prolymphocytic leukemia (T-PLL). Therefore, SAMHD1 may play a role in oncogenesis as a tumor suppressor. In addition, SAMHD1 may confer resistance to cytarabine by hydrolysing their active triphosphate metabolites and its high protein levels correlate with poorer clinical outcome in acute myeloid leukemia. The mutation status of SAMHD1 gene and its expression patterns in peripheral T-cell lymphoma types is not known yet. The purpose of this study was to investigate SAMHD1 gene alterations using next generation sequencing and SAMHD1 protein expression in common types of PTCL. Methods: The study group included 81 adult patients with peripheral T-cell lymphomas (PTCL) including 26 patients with ALK+ anaplastic large cell lymphoma (ALCL), 20 ALK- ALCL, 13 angioimmunoblastic T-cell lymphomas (AILT) and 22 PTCL, not otherwise specified (NOS) with pre-treatment, formalin-fixed, paraffin-embedded (FFPE) tumor tissues available for immunohistochemical analysis. Double immunostaining (SAMHD1/CD68) was used to distinguish CD68+ histiocytes from the neoplastic T-cells. The Ventana autostainer and a previously validated monoclonal antibody for SAMHD1 (#A303-691A; Bethyl Laboratories, San Antonio, TX, USA) was utilized. The percentage of SAMHD1-positive cells was calculated by counting at least 500 tumor cells in each case. In a subset of 28 PTCLs, next generation sequencing (NGS) was performed using FFPE tissues and an enriched custom TruSight gene panel of 52 genes relevant to lymphoma biology. In addition, 3 control tissue samples were included in the analysis. The analysis pipeline was based on GATK best practices guidelines and all variants were annotated using Ensembl VEP v94.5. Freedom from progression (FFP) and overall survival (OS), were the clinical endpoints. Survival analyses were performed using the Kaplan-Meier method (log-rank test). Results: The expression level of SAMHD1 (percentage of positive neoplastic T-cells) varied significantly with AILT showing the highest level (median percentage 80%) as compared to ALK+ ALCL that showed the lowest level (median percentage 40%) of SAMHD1 expression (p=0.019, Kruskall-Wallis test). SAMHD1 mutations were detected for the first time in a subset of PTCL including 4/11 (36%) ALK+ ALCL, 1/5 (20%) ALK- ALCL, 3/6 (50%) AILT and 2/5 (40%) PTCL, NOS. The SAMHD1 gene alterations included missense mutations, nonsense (stopcodon) and splice region mutations. Importantly, reduced level (low percentage of positive tumor cells) of SAMHD1 protein expression was significantly associated with the presence of SAMHD1 mutations. More specifically, the median percentage of SAMHD1+ neoplastic T-cells was 80% in the PTCL group with wild-type SAMHD1 gene compared to 30% in the PTCL group with mutated SAMHD1 gene (p=0.01, Mann-Whitney U test), thus suggesting that alterations of SAMHD1 gene may represent a mechanism of SAMHD1 protein downregulation in a subset of PTCL. SAMHD1 expression or gene alterations did not correlate with FFP or OS in any PTCL histologic type, although the number of patients included in each group was not adequate to draw definite conclusions for prognostic significance. Conclusions: SAMHD1 gene mutations are frequently detected in a subset of PTCL and are associated with reduced expression of SAMHD1 protein. These findings reveal a novel mechanism (SAMHD1 mutations) of SAMHD1 downregulation in PTCL, and further support the tumor suppressor function of SAMHD1 gene in lymphomas. Disclosures Rosenquist Brandell: AbbVie: Honoraria; AstraZeneca: Honoraria; Illumina: Honoraria; Janssen: Honoraria; Roche: Honoraria.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Xu, Bowen, Qianyi Sui, Han Hu, Xiangjia Hu, Xuchang Zhou, Cheng Qian und Nan Li. „SAMHD1 Attenuates Acute Inflammation by Maintaining Mitochondrial Function in Macrophages via Interaction with VDAC1“. International Journal of Molecular Sciences 24, Nr. 9 (26.04.2023): 7888. http://dx.doi.org/10.3390/ijms24097888.

Der volle Inhalt der Quelle
Annotation:
Over-activation of Toll-like receptor 4 (TLR4) is the key mechanism in Gram-negative bacterial infection-induced sepsis. SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) inhibits multiple viruses, but whether it plays a role during bacterial invasion remains unelucidated. Monocyte-macrophage specific Samhd1 knockout (Samhd1−/−) mice and Samhd1−/− macrophage cell line RAW264.7 were constructed and used as research models to evaluate the role of SAMHD1 in TLR4-activated inflammation. In vivo, LPS-challenged Samhd1−/− mice showed higher serum inflammatory factors, accompanied with more severe inflammation infiltration and lower survival rate. In vitro, Samhd1−/− peritoneal macrophages had more activated TLR4 pathway upon LPS-stimulation, accompanied with mitochondrial depolarization and dysfunction and a higher tendency to be M1-polarized. These results could be rescued by overexpressing full-length wild-type SAMHD1 or its phospho-mimetic T634D mutant into Samhd1−/− RAW264.7 cells, whereas the mutants, dNTP hydrolase-function-deprived H238A and phospho-ablative T634A, did not exert the same effect. Lastly, co-IP and immunofluorescence assays confirmed that SAMHD1 interacted with an outer mitochondrial membrane-localized protein, voltage-dependent anion channel-1 (VDAC1). SAMHD1 inhibits TLR4-induced acute inflammation and M1 polarization of macrophages by interacting with VDAC1 and maintaining mitochondria function, which outlines a novel regulatory mechanism of TLR signaling upon LPS stimulation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Plitnik, Timothy, Mark E. Sharkey, Bijan Mahboubi, Baek Kim und Mario Stevenson. „Incomplete Suppression of HIV-1 by SAMHD1 Permits Efficient Macrophage Infection“. Pathogens and Immunity 3, Nr. 2 (06.12.2018): 197. http://dx.doi.org/10.20411/pai.v3i2.263.

Der volle Inhalt der Quelle
Annotation:
Background: Sterile alpha motif and histidine/aspartic acid domain-containing protein (SAMHD1) is a dNTP triphosphorylase that reduces cellular dNTP levels in non-dividing cells, such as macrophages. Since dNTPs are required for reverse transcription, HIV-2 and most SIVs encode a Vpx protein that promotes proteasomal degradation of SAMHD1. It is unclear how HIV-1, which does not appear to harbor a SAMHD1 escape mechanism, is able to infect macrophages in the face of SAMHD1 restriction.Methods: To assess whether HIV-1 had a mechanism to negate SAMHD1 activity, we compared SAMHD1 and dNTP levels in macrophages infected by HIV-1 and SIV. We examined whether macrophages infected by HIV-1 still harbored antiviral levels of SAMHD1 by assessing their susceptibility to superinfection by vpx-deleted SIV. Finally, to assess whether HIV-1 reverse transcriptase (RT) has adapted to a low dNTP environment, we evaluated SAMHD1 sensitivity of chimeric HIV-1 and SIV variants in which the RT regions were functionally exchanged.Results: Here, we demonstrate that HIV-1 efficiently infects macrophages without modulating SAMHD1 activity or cellular dNTP levels, and that macrophages permissive to HIV-1 infection remained refractory to superinfection by vpx-deleted SIV. Furthermore, through the use of chimeric HIV/SIV, we demonstrate that the differential sensitivity of HIV-1 and SIV to SAMHD1 restriction is not dictated by RT.Conclusions: Our study reveals fundamental differences between HIV-1 and SIV in the strategy used to evade restriction by SAMHD1 and suggests a degree of resistance of HIV-1 to the antiviral environment created by SAMHD1. Understanding how these cellular restrictions antagonize viral replication will be important for the design of novel antiviral strategies.Keywords: HIV-1/ macrophages/ SAMHD1
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Felip, Eudald, Lucía Gutiérrez-Chamorro, Maica Gómez, Edurne Garcia-Vidal, Margarita Romeo, Teresa Morán, Laura Layos et al. „Modulation of DNA Damage Response by SAM and HD Domain Containing Deoxynucleoside Triphosphate Triphosphohydrolase (SAMHD1) Determines Prognosis and Treatment Efficacy in Different Solid Tumor Types“. Cancers 14, Nr. 3 (27.01.2022): 641. http://dx.doi.org/10.3390/cancers14030641.

Der volle Inhalt der Quelle
Annotation:
SAMHD1 is a deoxynucleotide triphosphate (dNTP) triphosphohydrolase with important roles in the control of cell proliferation and apoptosis, either through the regulation of intracellular dNTPs levels or the modulation of the DNA damage response. However, SAMHD1′s role in cancer evolution is still unknown. We performed the first in-depth study of SAMHD1′s role in advanced solid tumors, by analyzing samples of 128 patients treated with chemotherapy agents based on platinum derivatives and/or antimetabolites, developing novel in vitro knock-out models to explore the mechanisms driving SAMHD1 function in cancer. Low (or no) expression of SAMHD1 was associated with a positive prognosis in breast, ovarian, and non-small cell lung cancer (NSCLC) cancer patients. A predictive value was associated with low-SAMHD1 expression in NSCLC and ovarian patients treated with antimetabolites in combination with platinum derivatives. In vitro, SAMHD1 knock-out cells showed increased γ-H2AX and apoptosis, suggesting that SAMHD1 depletion induces DNA damage leading to cell death. In vitro treatment with platinum-derived drugs significantly enhanced γ-H2AX and apoptotic markers expression in knock-out cells, indicating a synergic effect of SAMHD1 depletion and platinum-based treatment. SAMHD1 expression represents a new strong prognostic and predictive biomarker in solid tumors and, thus, modulation of the SAMHD1 function may constitute a promising target for the improvement of cancer therapy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Qin, Zhihua, Serena Bonifati, Corine St. Gelais, Tai-Wei Li, Sun-Hee Kim, Jenna M. Antonucci, Bijan Mahboubi et al. „The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells“. Journal of Biological Chemistry 295, Nr. 6 (30.12.2019): 1575–86. http://dx.doi.org/10.1074/jbc.ra119.010360.

Der volle Inhalt der Quelle
Annotation:
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-β, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus–infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-β mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "SAMDH1"

1

Martin, Michaël. „Mécanisme moléculaire de l'antagonisme du complexe HUSH par les protéines lentivirales Vpx et Vpr“. Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5160.

Der volle Inhalt der Quelle
Annotation:
Les VIH-1 et VIH-2, lentivirus responsables du SIDA, sont issus de transmissions inter-espèces de virus simiens (SIV) à l'homme. Outre leurs protéines de structure et de régulation, les lentivirus codent pour des protéines auxiliaires qui favorisent la réplication virale dans la cellule hôte en contrecarrant des facteurs cellulaires antiviraux, appelés facteurs de restriction. Le mécanisme d'action de ces protéines virales auxiliaires repose souvent sur le détournement de complexes Ubiquitine-Ligases, un mécanisme très répandu chez une grande variété de pathogènes, en vue de dégrader des protéines de la cellule hôte. Ce mécanisme est utilisé par la protéine Vpx, exprimée uniquement par VIH-2 (et non par VIH-1), qui induit la dégradation de SAMDH1, un facteur de restriction bloquant l'étape de transcription inverse. Ainsi, Vpx fait un pont moléculaire entre l'adaptateur DCAF1 du complexe Ubiquitine-Ligase Cul4A-DDB1(DCAF1) et SAMHD1, ce qui entraîne l'ubiquitination et la dégradation de SAMHD1. En 2018, notre équipe a montré que Vpx induisait la dégradation d'un facteur cellulaire supplémentaire : le complexe HUSH, composé de TASOR, MPP8 et Périphiline. Ce complexe intervient dans la répression épigénétique non seulement de nombreux gènes cellulaires, d'éléments rétro-transposables et de rétrovirus endogènes, mais aussi du génome du VIH intégré dans celui de la cellule infectée. En dégradant HUSH, Vpx favorise l'expression virale. Dans ce contexte, les objectifs de ma thèse ont été de : (i) Déterminer si le mécanisme de dégradation de HUSH induit par Vpx de VIH2 était identique au mécanisme de dégradation de SAMHD1. J'ai pu mettre en évidence des différences importantes entre les deux mécanismes bien que Vpx utilise, dans les deux cas, le même adaptateur d'Ubiquitine-Ligase, DCAF1 (coeur principal du travail de thèse, article soumis). (ii) Caractériser les déterminants moléculaires en jeu dans l'antagonisme de HUSH par d'autres protéines lentivirales. Premièrement, il s'agissait de savoir si les différentes protéines virales apparentées à Vpx chez différentes espèces de virus simiens avaient toutes la même capacité à dégrader le complexe HUSH. Nous avons ainsi pu mettre en évidence une spécificité lentivirale de l'antagonisme du complexe HUSH, une caractéristique majeure des facteurs de restriction (contribution à l'article Chougui et al., Nature microbiology, 2018). Dans un second temps, ceci m'a conduit à débuter l'étude des déterminants viraux de ces protéines apparentées à Vpx, telles les protéines Vpr de différentes souches de SIVagm (infectant le singe vert africain) qui présentent des phénotypes différents quant à la dégradation de SAMHD1 ou de HUSH (travail en cours). L'ensemble des résultats a permis, d'une part de mieux caractériser le mécanisme d'antagonisme de HUSH par les protéines lentivirales Vpx/Vpr, et d'autre part de fournir de premiers outils moléculaires pour différencier l'antagonisme de HUSH de celui de SAMHD1 dans les cellules primaires. Dans le futur, les données pourront aider à mieux comprendre comment diverses protéines lentivirales se sont adaptées à leurs différents substrats cellulaires (et vice-versa) au cours de l'évolution. Enfin, cibler HUSH grâce à l'identification de déterminant d'interaction ou de dégradation pourrait être intéressant pour le développement de nouvelles cibles thérapeutiques
HIV-1 and HIV-2, lentiviruses responsible for AIDS, appeared in humans after cross-species transmissions from simian viruses (SIV). In addition to their structural and regulatory proteins, lentiviruses encode auxiliary proteins that promote viral replication in the host cell by counteracting antiviral cellular factors, called restriction factors. The mechanism of action of these viral auxiliary proteins often relies on the hijacking of Ubiquitin-Ligase complexes, a mechanism widely used by various pathogens, to degrade host cell proteins. This mechanism is used by the Vpx protein, expressed only by HIV-2 (and not by HIV-1), which induces the degradation of SAMDH1, a restriction factor blocking the reverse transcription step. Thus, Vpx molecularly bridges the DCAF1 adaptor of the Cul4A-DDB1(DCAF1) Ubiquitin-Ligase complex with SAMHD1, resulting in ubiquitination and degradation of SAMHD1. In 2018, our team showed that Vpx induces the degradation of an additional cellular factor: the HUSH complex, composed of TASOR, MPP8 and Periphilin. This complex is involved in the epigenetic repression not only of many cellular genes, retro-transposable elements and endogenous retroviruses, but also of the HIV genome integrated into the infected cell. By degrading HUSH, Vpx promotes viral expression. In this context, the objectives of my thesis were to: (i) Determine whether HUSH degradation mechanism induced by HIV-2 Vpx was identical to SAMHD1 degradation mechanism. I was able to highlight important differences between the two mechanisms although Vpx uses, in both cases, the same Ubiquitin-Ligase adaptor, DCAF1 (main focus of the thesis work, submitted article). (ii) Characterize the molecular determinants involved in the antagonism of HUSH by other lentiviral proteins. First, we wanted to know if different Vpx-related viral proteins, in various simian virus species, had the same capacity to degrade the HUSH complex. This allowed us to reveal a lentiviral species-specificity of HUSH complex antagonism, a major characteristic of restriction factors (contribution to Chougui et al., Nature microbiology, 2018). Secondly, this led me to start studying the viral determinants of these Vpx-related proteins, such as the Vpr proteins from different strains of SIVagm (infecting the African green monkey) that present different phenotypes regarding both SAMHD1 or HUSH degradation (work in progress). All the results allowed us to better characterize the mechanism of HUSH antagonism by Vpx/Vpr lentiviral proteins, and to provide the first molecular tools to differentiate HUSH antagonism from SAMHD1 antagonism in primary cells. In the future, these data may help to better understand how various lentiviral proteins have adapted to their different cellular substrates (and vice versa) along evolution. Finally, targeting HUSH through the identification of interaction or degradation determinants could be interesting for the development of new therapeutic targets
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hani, Lylia. „Caractérisation et rôle des lymphocytes T CD4+ mémoires SAMHD1low au cours de l'infection par le VIH-1“. Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC0087/document.

Der volle Inhalt der Quelle
Annotation:
La mise en évidence du rôle de la molécule SAMHD1 dans l’infection par le VIH-1 en tant que facteur de restriction a ouvert de nouvelles perspectives dans la compréhension de la pathogénicité du virus.En effet, il a été clairement démontré que dans les cellules myéloïdes comme les monocytes/macrophages et les cellules dendritiques ainsi que les lymphocytes T CD4+ quiescents, SAMHD1 jouait un rôle important dans la protection de ces cellules de l’infection. En revanche, le rôle de cette molécule dans l’infection des lymphocytes activés, qui sont souvent la cible préférentielle du virus, n’est pas élucidé.Nos résultats ont révélé l'existence d'une sous-population de lymphocytes T CD4+ mémoires exprimant de faibles niveaux de SAMHD1 (CD4+ CD45RO+ SAMHD1low), tandis que la grande majorité des lymphocytes expriment cette molécule à des niveaux plus élevés (94±0.7%). Nous montrons également que ces cellules sont hautement différenciées, qu’elles expriment en larges proportions le marqueur de cycle cellulaire Ki67 et qu’elles sont enrichies en cellules « T helper 17 » (Th17) dans le sang périphérique.De plus, la fréquence de la population CD4+ CD45RO+ SAMHD1low, est diminuée de manière significative chez les patients infectés par le VIH-1 par rapport aux sujets sains. De manière intéressante, nous montrons que dans les ganglions, les cellules T follicular helper (Tfh) expriment faiblement SAMHD1 et sont plus susceptibles à l’infection par le VIH-1 in vitro.L’ensemble de ces résultats suggère que les cellules SAMHD1 low représentent une cible préférentielle pour le virus et pourraient contribuer au réservoir viral.Les objectifs de ce projet sont:1. Déterminer si les cellules SAMHD1low contiennent plus de virus par comparaison aux cellules mémoires SAMHD1high et comparer les séquences virales isolées des cellules mémoires SAMHD1low et SAMHD1high.2. Caractérisation des cellules SAMHD1low au niveau moléculaire par une analyse transcriptomique qui permettra la mise en évidence de marqueurs membranaires
We have previously reported the presence of memory CD4+ T cells that display low levels of SAMHD1 (SAMHD1low ) enriched in Th17 and Tfh cells. Here we investigated gene expression profile and the size and composition of HIV DNA population in SAMHD1 low cells.A total of 36 individuals on c-ART (median: 7y) with median CD4+ counts and nadir of 549 cells/ul and 210 cells/ul respectively, including 6 elite controllers (EC, CD4+: 900 cells/ul) and 8 healthy donors were studied. Blood memory CD4+ CD45RO+ SAMHD1low, CD45RO+ SAMHD1high and naive CD45RO- SAMHD1high cells were sorted. Cell associated HIV-1 DNA levels were quantified (HIV DNA Cell, Biocentric) and ultra-deep-sequencing (UDS, 454/Roche) of partial env (C2/V3) HIV-1 DNA was performed. Gene expression profile on sorted cells was deternined with RNA-Sequencing (Illumina RNASeq technology). Levels of HIV-1 DNA were significantly higher in memory SAMHD1low cells compared to SAMHD1high cells (4.5 [3.1-6.2] vs 3.8 [2.9-5.7] log/10 6 cells, respectively, p=0.02) among c-ART individuals, while naïve CD45RO- SAMHD1high showed lower levels (3.1 [1.6-4.4]). EC exhibited low HIV-1 DNA level in both SAMHD1low and SAMHD1high (1.6 and 2.3 log/10 6 cells respectively p>0.05). Naïve CD45RO - SAMHD1 high cells from EC showed lower DNA compared to naïve cells from c-ART pts (1.6 and 3.1 log/10 6 cells, respectively, p=0.01). Phylogenetic analyses revealed well-segregated HIV-DNA populations between subsets with significant compartmentalization between SAMHD1low and SAMHD1high cells in all but 2 participants (p<0.001) and limited viral exchange. Moreover SAMHD1low cells exhibited a distinct gene profile as compared to SAMHD1high allowing thus further characterisation of these cells.This pilot study revealed distinct HIV DNA populations in size and composition associated with unique genes profile in memory SAMHD1low cells. We show that memory SAMHD1low cells exhibit distinct genes profile which segregates them from the SAMHD1 high counterpart, and contain the highest level of HIV-1 DNA. We reveal distinct/well-segregated HIV-1 DNA populations in both subsets, suggesting minimal viral exchange
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Valverde, Estrella Lorena. „TREX1 and SAMHD1, and Aicardi-Goutières Syndrome“. Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/291940.

Der volle Inhalt der Quelle
Annotation:
Aicardi-Goutières Syndrome (AGS) is a rare encephalopathy which mimics a viral intrauterine infection and is characterized by calcifications of the basal ganglia, cerebral atrophy and IFN-a in the cerebrospinal fluid. AGS is a heterogenic disease associated with mutations in the gene of the exonuclease TREX1, in any of the genes codifying for the ribonuclease H2, in the phosphohydrolase SAMHD1, in the deaminase ADAR1 or in the cytoplasmic sensor MDA5. The knowledge of these functions is basic for the comprehension of the beginning of the pathogenesis of AGS. In this thesis we focused in the mechanism of Samhd1 transcription. We have seen that Samhd1 is induced by pro-inflammatory stimuli but neither by anti-inflammatory stimuli nor TNF-a, and that the induction of Samhd1 is through STAT1 pathway. We wanted to know a bit more about Samhd1 induction so we focused on the study of its promoter. We did a construct in a luciferase-reporter vector with 1500bp of Samhd1 promoter, and we saw that this region of the promoter is enough to induce luciferase expression. From this construct, we did new plasmids and when deleting a specific region, the luciferase expression was abolished, indicating that in Samhd1 promoter, 161bp are critical for Samhd1 induction. EMSA assays showed that Samhd1 expression is repressed in basal conditions by an unknown protein, and ChIP assays also showed that IRF1 is involved in Samhd1 induction by IFN-.. We hypothesized that the regulation mechanism is depending in an STAT1-depending pathway, through IRF1, and also in an STAT1-independing pathway, through an unknown mechanism up to date. We checked with proteomics analysis the protein which might be involved in Samhd1 repression but the results were not significant. We also constructed a conditional KO mouse for TREX1, and now we are crossing it with different CRE­Socs2 expressing strands. Homozygous KO expressing CRElitter, show a similar phenotype to TREX1 total KO. We are in the process to obtain homozygous KO expressing CRELysM, but due to problems with the penetrance of this CRE allele we have some difficulties. All together, the results of this thesis will shed light in the inner operation of AGS.
La síndrome d'Aicardi-Goutières (AGS), és una malaltia autoimmunitària recessiva que mimetitza una infecció vírica intrauterina, i la qual és caracteritzada per calcificacions intracranials, atròfia cerebral i augment d'IFN-alfa al líquid cefaloraquidi. L'AGS és una malaltia genètica heterogènia associada amb mutacions al gen que codifica per a l'exonucleasa TREX1, a qualsevol dels gens codificants per a les components de la ribonucleasa RNASE H2, a la fosfo­hidrolasa SAMHD1, a la deaminasa ADAR1 o al sensor citoplasmàtic MDA5. El coneixement d'aquestes funcions és fonamental per tal d'entendre la patogènesi de l'AGS. En aquesta tesi s'ha aprofundit en el coneixement del mecanisme regulador de la transcripció de Samhd1. Hem vist que Samhd1 es troba expressat en diferents òrgans sense necessitat de cap estímul previ, com el pàncrees, l’intestí prim i els macròfags derivats de moll d’os, i en diferents quantitats en altres òrgans de ratolí. Donada la important afectació que té l’AGS al cervell, també es va analitzar la seva expressió en neurones i cèl·lules de la micròglia. També hem vist que Samhd1 es troba induït en presència de citocines proinflamatòries, però no es troba afectada la seva expressió en presència de citocines antiinflamatòries així com tampoc en presència de TNF-gamma. Utilitzant macròfags derivats de ratolins deficients en STAT1, hem pogut demostrar que l’expressió de Samhd1 per IFN-alfa és a través d’STAT1, ja que la seva expressió es troba completament reprimida en aquestes cèl·lules. Ens vam centrar en la inducció de Samhd1 i per la seva comprensió vam focalitzar en l’estudi del seu promotor. Es van clonar 1500 parells de bases del promotor de Samhd1 en un plasmidi reporter de luciferasa, i es va veure que aquest fragment era suficient per induir l’expressió de luciferasa. A partir d’aquest constructe, es van realitzar llavors noves construccions delecionant cada vegada una regió del promotor. Es va veure que en delecionar una regió específica de 161pb, l’expressió de luciferasa es trobava completament reprimida, indicant que aquesta regió del promotor és crítica per a la inducció de Samhd1. Experiments de retard en gel (EMSA) van mostrar que Samhd1 es troba reprimit en condicions basals per una proteïna que no hem arribat a caracteritzar, i experiments de precipitació de cromatina (ChIP) van mostrar que IRF1 es troba involucrada en la inducció de Samhd1 per IFN-alfa. La nostra hipòtesi doncs, és que l’expressió de Samhd1 té un mecanisme de regulació doble: en condicions basals es troba reprimit i en presència d’IFN-alfa s’indueix una via de senyalització independent d’STAT1 que fa saltar el complex repressor del promotor, i també s’indueix una via de senyalització dependent d’STAT1, que indueix l’expressió d’IRF1 i que activa la transducció de Samhd1. Fins ara no hem caracteritzat la proteïna o complex de proteïnes que reprimeix l’expressió de Samhd1 en condicions basals, però s’està investigant mitjançant anàlisis proteòmics. En aquesta tesi també s’ha fet la construcció d’un ratolí KO condicional per a TREX1. Una vegada aconseguit aquest animal condicional, el qual conté el gen de Trex1 flanquejat per dues dianes LoxP, aquest s’està encreuant amb diferents soques que expressen CRE sota regulació de diferents Socs2 promotors. Els ratolins homozigots KO i que expressen CRE, tenen un fenotip similar al fenotip que mostren els ratolins KO totals de TREX1. Estem en el procés d’obtenció de ratolins homozigots KO i que expressen CRELysM però, donat a problemes amb la penetrància d’aquest al·lel, hem tingut algunes dificultats. Els resultats d’aquesta tesi en conjunt poden ajudar a entendre una mica més el funcionament de l'AGS.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Antonucci, Jenna Marie. „Mechanisms of HIV-1 Restriction by the Host Protein SAMHD1“. The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524006072232491.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sébert, Marie. „Génétique et évolution clonale des syndromes d’insuffisance médullaire“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC271.

Der volle Inhalt der Quelle
Annotation:
Les syndromes d’insuffisance médullaire sont liés à des mutations constitutionnelles à l’origine d’une hématopoïèse déficiente chez les patients atteints. Ils représentent un groupe hétérogène de maladies syndromiques, et impliquent plusieurs familles de gènes avec des mécanismes biologiques différents conduisant à l’insuffisance médullaire. Ces maladies prédisposent à une évolution clonale somatique, avec un risque accru de développer un syndrome myélodysplasique (SMD) ou une leucémie aigüe myéloïde (LAM) au cours du temps. Nous avons séquencé et analysé l’exome d’ADN fibroblastique d’une cohorte de 179 patients ayant des insuffisances médullaires, des SMD ou des LAM, supposés d’origine constitutionnelle mais sans diagnostic établi. Ce travail a permis de porter un diagnostic moléculaire chez 86 (48%) patients, et de participer à la description de nouveaux syndromes impliquant les gènes SAMD9/SAMD9L (N=16/86, 18,6%), MECOM/EVI1 (N=6, 7%) et ERCC6L2 (N=7, 8,1%). Le suivi longitudinal des patients nous a permis de décrire un modèle d’évolution clonale particulier chez les patients ayant des mutations SAMD9/SAMD9L. Le syndrome d’insuffisance médullaire le plus fréquent est la maladie de Fanconi (AF ou FA), causée par une mutation germinale dans un des gènes de la voie de réparation FA/BRCA. Les cellules des patients FA ont une instabilité chromosomique liée à un défaut de réparation, avec une pression de sélection conduisant à une évolution clonale prototypique. Nous avons étudié une cohorte de 335 patients FA et confirmé de façon statistiquement significative l’ordre d’apparition des évènements cytogénétiques de ces patients au cours de l’évolution clonale et de la leucémogenèse : 1q+, 3q+, -7/del7q, délétion ou mutation RUNX1. L’étude moléculaire longitudinale des patients (NGS panel, WES, WGS) a confirmé un mécanisme oncogénique en rapport avec une instabilité chromosomique plus que génomique. En nous intéressant à l’anomalie cytogénétique la plus fréquente et la plus précoce : le 1q+, nous avons observé que le point de cassure péricentromérique sur ce chromosome correspondait à un site fragile, réparé ensuite par une voie de réparation alt NHEJ. La zone minimale dupliquée contenait le gène MDM4, un inhibiteur des fonctions transactivatrices de p53, qui constituait ainsi un bon candidat pour conférer aux cellules un avantage clonal et initier la leucémogenèse. Nous avons d’abord confirmé que les cellules des patients 1q+ avaient une surexpression de MDM4 et une inactivation de la voie p53 en aval (RNAseq). Puis, nous avons montré que cette surexpression permettait de restaurer les capacités fonctionnelles des progéniteurs hématopoïétiques humains FA, de façon réversible avec l’inhibition de MDM4, constituant ainsi une éventuelle cible thérapeutique. Les syndromes d’insuffisance médullaire sont des maladies rares, et nos travaux, en parallèle de ceux d’autres équipes, ont participé à la description de nouveaux gènes impliqués. L’étude de l’évolution clonale de ces syndromes représente une évolution dans la compréhension de la physiopathologie des SMD/LAM, et peut conduire à l’identification de cibles thérapeutiques chez ces patients
Inherited bone marrow failure (IBMF) syndromes are heterogeneous diseases related to germ line mutations causing deficient hematopoiesis in mutated patients. Mutations involve several families of genes with different biological pathways driving the bone marrow failure. Most germ line genetic BMF disorders are characterized by a high propensity to clonal evolution and to develop MDS or AML. We used a whole-exome sequencing (WES) comprehensive analysis on fibroblast DNA samples from 179 patients with BMF/MDS of unresolved inherited origin. We provided a molecular diagnosis for 86/179 BMF patients (48%) including several seldom-reported IBMF/MDS entities like SAMD9/SAMD9L, MECOM/EVI1, and ERCC6L2. In particular, we described a specific clonal evolution in patients having mutations in SAMD9 and SAMD9L.Fanconi anemia (FA) is the most common IBMF syndrome, caused by a germ line mutation in one gene of the FA pathway. DNA repair deficiency in patient’s FA cells leads to chromosomal instability, which sets the stage for clonal evolution with a specific pattern of chromosomal abnormalities. We used integrated clinical, next-generation genomic and functional studies on primary cells from a National cohort of 335 FA patients, including 98 with clonal evolution, to decipher the mechanisms of BM progression. While relatively few somatic point mutations were found, unbalanced translocations leading to gross chromosomal copy-number abnormalities were most prominent. Whole genome sequencing revealed an FA-specific signature in which microhomology-mediated end joining (MMEJ) or non homologous end joining (NHEJ) repair had mediated genome rearrangements, consistent with the constitutive homologous repair defect. Longitudinal studies confirmed the order of chromosomal events during FA patients oncogenesis: 1q+, 3q+, -7/del7q, del or RUNX1 mutations. A major initial step was duplication of chromosome 1q, resulting in strong expression of MDM4, a negative regulator of p53, which can be targeted by MDM4-inhibitors.IBMF are rare diseases and our study participated to describe new genetic and clinical entities. Studying the clonal evolution of IBMF syndromes can help to understand MDS and AML pathophysiology and lead to therapeutic target identification
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Louis, Tania. „Étude des fonctions cellulaires de SAMHD1, facteur de restriction du VIH-1“. Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS050/document.

Der volle Inhalt der Quelle
Annotation:
L'étude des interactions entre un pathogène et son hôte, bien qu'ayant généralement pour objectif de contrôler l'infection par le pathogène, permet parfois de découvrir des éléments fondamentaux sur le fonctionnement de l'hôte. J'ai choisi d'étudier les fonctions cellulaires d'une protéine initialement identifiée comme un facteur de restriction du VIH-1. SAMHD1 (SAM domain and HD domain-containing protein 1) est une protéine exprimée dans la plupart des tissus humains. Elle est capable d'hydrolyser les déoxyribonucléotides triphosphates (dNTP) cellulaires et possède une activité nucléase ciblant différents acides nucléiques dont les ARN simple brin in vitro. Des mutations dans le gène SAMHD1 entraînent le développement d'une maladie auto-immune pouvant conduire à la mort précoce des nourrissons, ce qui suggère un rôle de la protéine correspondante dans la régulation de la réponse immunitaire. Il a été montré que SAMHD1 est un facteur de restriction capable d'empêcher l'infection de cellules ne se divisant pas par le VIH-1. La protéine virale Vpx, exprimée par le VIH-2, est capable d'induire la dégradation de SAMHD1 par le protéasome et permet de rendre permissives les cellules initialement résistantes à l'infection par le VIH. SAMHD1 est en réalité capable de restreindre l'infection par des virus aussi différents que les rétrovirus et le virus de l'herpès simplex 1. Néanmoins, le mécanisme permettant à SAMHD1 de contrecarrer différents virus reste aujourd'hui sujet à controverse. Initialement considéré comme agissant en dégradant les dNTP cellulaires, SAMHD1 semble également capable de dégrader l'ARN génomique du VIH-1. Si de nombreux travaux portent sur l'activité antivirale de SAMHD1, peu de données sont disponibles concernant la fonction cellulaire de cette protéine. Or SAMHD1 est capable de réguler la quantité de dNTP cellulaires et d'interagir avec certains acides nucléiques. Ces données font de SAMHD1 un acteur potentiel de différents processus cellulaires fondamentaux sensibles à la quantité intracellulaire de dNTP, notamment la réplication du génome ou la réparation des dommages à l'ADN. J'ai montré au cours de mon doctorat que SAMHD1 module le cycle cellulaire et notamment que la surexpression de cette protéine ralentit la prolifération cellulaire. J'ai également observé que la surexpression de SAMHD1 augmente la sensibilité des cellules aux agents induisant des ruptures double brin de l'ADN. De plus, j'ai découvert qu'en cas de ruptures double brin de l'ADN cellulaire, SAMHD1 est régulé de façon spécifique par phosphorylation sur sa thréonine 592 et est recruté aux sites de cassures. D'autres travaux ont confirmé l'importance de la régulation de SAMHD1 au cours du cycle cellulaire, sa surexpression et sa réduction induisant toutes deux un ralentissement de la prolifération cellulaire. En complément de mes résultats, quelques études suggèrent que SAMHD1 joue un rôle dans le maintien de l'intégrité du génome, qui pourrait être dû à son effet sur la réponse aux dommages à l'ADN. Dans l'ensemble, ces résultats font de SAMHD1 un garant de l'homéostasie cellulaire. J'ai de plus montré que l'expression de SAMHD1 est réduite chez environ 80% des patients souffrant de leucémie lymphoïde chronique. La perte de cette protéine est donc corrélée à l'apparition d'une maladie découlant de la perturbation du fonctionnement cellulaire. L'étude d'échantillons d'autres types de tumeurs montre que, dans de moindres proportions, l'altération de l'expression de SAMHD1 est une caractéristique générale des cancers. Mes travaux de doctorat soulignent ainsi le rôle fondamental de SAMHD1 dans le maintien de l'intégrité cellulaire
Understanding host pathogen interactions reveals not only important information regarding the replication cycle of the pathogen but it often leads to the discovery and better understanding of key biological processes of the host. The aim of my PhD was to decipher the cellular functions of the HIV-1 restriction factor SAMHD1. SAMHD1 (SAM domain and HD domain-containing protein 1) is expressed in most human tissues. This protein is able to hydrolyze cellular deoxyribonucleotides triphosphate (dNTP) and possesses a nuclease activity primarily against single stranded RNA. Mutations in SAMHD1 have been described in patients suffering from an auto-immune disease causing premature death of newborns. This phenotype suggests a role of SAMHD1 in the control of immune response. Moreover, SAMHD1 restricts HIV-1 in non-cycling cells. The HIV-2 accessory protein Vpx induces SAMHD1 degradation by the proteasome, conferring cell permissiveness to HIV. In fact, the antiviral activity of SAMHD1 has been extended to other viruses including Herpes Simplex Virus 1 and Hepatitis B virus. Nevertheless, the mechanism by which SAMHD1 restrict HIV replication is debated. It was initially thought to act by depleting the dNTP pool but recent studies highlighted a potential role of SAMHD1 nuclease function in degrading HIV-1 genomic RNA. Many studies aiming at understanding the antiviral activity of SAMHD1 are being pursued, whereas little is known about the cellular function of this protein. The fact that SAMHD1 is able to regulate the cellular dNTP pool and to interact with nucleic acids suggests a key role of this protein in cellular processes, such as DNA replication and repair. During my PhD, I showed that SAMHD1 modulates the cell cycle, as the overexpression of this protein slows down cell proliferation. I also observed that SAMHD1 overexpression increases cellular sensitivity to double strand DNA breaks-inducing agents. Moreover I discovered that, after double strand breaks induction, SAMHD1 is specifically regulated by phosphorylation on its threonine 592 and recruited at the damaged sites. Other studies confirmed the importance of SAMHD1 regulation along the cell cycle as its overexpression and depletion both decrease cell proliferation. In addition to my observations, some studies suggested that SAMHD1 is important to maintain genomic integrity, presumably through its implication in DNA repair. Altogether, these results promote SAMHD1 as a key player in cellular homeostasis. I additionally showed that SAMHD1 expression is reduced in 80% of patients suffering from chronic lymphocytic leukemia (CLL). SAMHD1 loss is therefore correlated to the development of a disease due to disturbances of cellular integrity. Looking at samples from different types of tumors, I showed that SAMHD1 loss is shared between all tested cancers, although at lesser extent than in CLL. My PhD work underlines the central role of SAMHD1 to maintain cellular integrity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Silva, Maria-João. „Role of CTF18 and SAMHD1 in human DNA replication and genome integrity maintenance“. Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20236.

Der volle Inhalt der Quelle
Annotation:
La phase S est une période critique du cycle cellulaire au cours de laquelle le génome est particulièrement vulnérable. La duplication efficace des génomes eucaryotes dépend de la progression de milliers de fourches de réplication. Les premières étapes de la tumorigenèse sont associées au stress de réplication spontané, caractérisé par un blocage de la fourche. Comprendre comment le stress de réplication survient dans les cellules normales et contribue à la tumorigenèse est un grand défi dans la recherche sur le cancer. Mon travail de thèse vise à comprendre la régulation de la progression de la fourche de réplication par deux protéines différentes,SAMHD1 et CTF18, qui participent à divers aspects du métabolisme de l'ADN.La duplication du génome dépend d'un approvisionnement équilibré de désoxyribonucléosides triphosphates (dNTP).Des pools de dNTP déséquilibrées augmentent les taux de mutation. SAMHD1 a été identifié comme une triphosphohydrolase de dNTPs. Cette enzyme est impliquée dans le syndrome d'Aicardi-Goutières. Récemment, il a été montré que SAMHD1 est impliquée dans la régulation des pools de dNTPs dans des cellules humaines. Cette protéine est exprimée au maximum pendant la quiescence et peu en phase S. Cependant, l'impact de SAMHD1 sur la réplication de l'ADN n'a pas encore été abordée. En utilisant la technique DNA fiber spreading, nous avons constaté que SAMHD1 module la vitesse de progression de la fourche. En plus de son activité de dNTPase, SAMHD1 contient un domaine putatif 3'-5 'exonucléase qui clive à la fois l'ADN et l'ARN in vitro. Un nombre croissant de preuves indique que les exonucléases 3'-5 'sont essentielles pour assurer la progression de la fourche et la fidélité de la réplication de l'ADN. Nous avons constaté que l'activité d'exonucléase de SAMHD1 favorise le backtracking des fourches arrêtées et qu'elle est requise pour la progression normale des fourches de réplication. Nous proposons que cette activité de backtracking est importante pour enlever désoxynucléotides ou ribonucléotides mal incorporés. Au-delà du cancer, notre découverte pourrait avoir des implications pour la compréhension du lien entre SAMHD1 et le syndrome d'Aicardi-Goutières. CTF18 fait partie d'un complexe de type RFC impliqué dans la cohésion des chromatides sœurs (CCS). Dans les cellules humaines, il a été suggéré que CTF18 contrôle la progression des fourches de réplication, en favorisant l'acétylation de la cohésine SMC3 à la fourche de réplication. Cependant, plusieurs résultats indiquent que la fonction de CTF18 n'est pas limitée à la mise en place de la CCS.En effet, notre groupe a montré que Ctf18 chez la levure est essentielle pour l'activation du checkpoint de la réplication, indépendamment de son rôle dans la CCS.Chez l'homme, CTF18 participe également au recrutement de PCNA, le facteur de processivité des ADN polymérases δ et ε. CTF18 interagit également avec la polymérase translésionnelle ƞ. Le but de mon travail était de caractériser le rôle de CTF18 lors de la réplication de l'ADN. En utilisant le peignage moléculaire, nous avons remarqué que la vitesse de la fourche de réplication est plus lente dans les cellules dépletés en CTF18 dans une phase S normale.Curieusement, l'augmentation de la vitesse de la fourche a été observée dans les cellules dépletés en CTF18 traités avec l'hydroxyurée (HU), qui ressemble au phénotype des cellules dépletés pour SAMHD1. Avec l'utilisation de la technique iPOND, nous avons observé une accumulation de PCNA aux fourches de réplication dans les cellules CTF18 traités avec HU. Nous avons également constaté que la déplétion de CTF18 induit une accumulation de yH2AX, ce qui suggère que CTF18 est nécessaire pour la stabilité du génome. Enfin, nous avons observé que la résection dépendante de SAMHD1 ne se produit pas en l'absence de CTF18. Collectivement, ces données indiquent que CTF18 agit en amont de SAMHD1 aux fourches arrêtées, probablement par le déchargement de PCNA
S phase is a critical period of the cell cycle during which the genome is particularly vulnerable. The efficient duplication of eukaryotic genomes depends on the unperturbed progression of thousands of replication forks.The early stages of tumorigenesis are associated with spontaneous replication stress, characterized with a blockage of fork progression. Understanding how replication stress arises in normal cells and contributes to tumorigenesis is a major challenge in cancer research.My thesis work aims at understanding the regulation of replication fork progression by two different proteins, SAMHD1 and CTF18, which have important roles in various aspects of DNA metabolism.Faithful duplication of the genome depends on a balanced supply of deoxyribonucleoside triphosphates (dNTPs). Imbalanced dNTP pools decrease the fidelity of DNA polymerases and increase mutation rates. SAMHD1 was originally identified as a dNTP triphosphohydrolase. This enzyme is implicated in Aicardi-Goutières syndrome. It has also been identified as a component of the human innate immune system that restricts HIV-1 infection. Recently, SAMHD1 was shown to be involved in the regulation of dNTP pools in cultured human cells. This protein is maximally expressed during quiescence and minimally during S phase. However, the impact of SAMHD1 upon DNA replication has not been addressed. Using DNA fiber spreading, we found that SAMHD1 modulates the speed of fork progression. In addition to its dNTPase activity, SAMHD1 contains a putative 3'-5' exonuclease domain that cleaves both DNA and RNA in vitro. A growing body of evidence indicates that 3'-5' exonucleases are critical to ensure fork progression and the fidelity of DNA replication. Remarkably, we found that the exonuclease activity of SAMHD1 promotes backtracking at paused forks and is important for replication fork progression. We propose that this backtracking activity is important to remove miss-incorporated deoxynucleotides or ribonucleotides. Our finding may have implications for our understanding of the link between SAMHD1 and the Aicardi-Goutières syndrome.CTF18 is part of a RFC-like complex involved in sister chromatid cohesion (SCC). In human cells it has been suggested that CTF18 controls the progression of replication forks, presumably by promoting acetylation of the SMC3 cohesin at replication forks. However, several results indicate that the function of CTF18 is not restricted to the establishment of SCC. Indeed, our group has shown that the yeast Ctf18 is essential for activation of the replication checkpoint, independently of its role in SCC. In human, CTF18 also participates in the recruitment of PCNA, the processivity factor of DNA polymerases δ and ε. CTF18 also interacts with the translesion polymerase . The aim of my work was to characterize the role of CTF18 during DNA replication. Using DNA combing, we first noticed that replication fork speed is slower in CTF18-depleted cells under unperturbed conditions. Intriguingly, increased fork speed was observed in CTF18-depleted cells challenged with hydroxyurea (HU), which is reminiscent of the phenotype of SAMHD1-depleted cells. Using iPOND, we observed an accumulation of PCNA at replication forks in HU-treated CTF18-depleted cells. We also found that CTF18 depletion induces an accumulation of yH2AX, suggesting that CTF18 is required for genome stability. Finally, we observed that the resection mediated by SAMHD1 at paused forks does not occur in the absence of CTF18. Together, these data indicate that CTF18 acts upstream of SAMHD1 at stalled forks, presumably through the unloading of PCNA
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Qin, Zhihua. „SAMHD1 Negatively Regulates the Innate Immune Responses to Inflammatory Stimuli and Viral Infection“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587587968104986.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cenker, Jennifer Jean. „DIFFERENTIAL HIV-1 SUSCEPTIBILITY OF PRIMARY MACROPHAGE POPULATIONS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1491656059069304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Feifei. „Comparison of Murine and Human SAMHD1’s Role in Retroviral Restriction and Cell Cycle Progression“. The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1448450028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "SAMDH1"

1

Tripāṭhī, Nṛsiṃha. Svapna samādhi: Swapna samadhi. Kaṭaka: Bidyãpurĩ̄, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Salmān, Ṭīpū. Samah davār (Panjāb) te aohde rang: Samha Dvar (Punjab) te ohdey rung. Lāhaur: Sanjh, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yŏm, Sang-sŏp. Samdae. Sŏul Tʻŭkpyŏlsi: Yangudang, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Samidha. Hyderabad: Orient Longman, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Saurabha, Subhāsha. Samidhā. Dillī: Jayaśrī Prakāśana, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

1948-, Kwŏn Yŏng-min, Hrsg. Samdae. Sŏul: Minŭmsa, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Samdae. Sŏul-si: Chisŏng ŭi saem, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yŏm, Sang-sŏp. Samdae [oe]. Sŏul: Hagwŏn Chʻulpʻan Kongsa, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

ZOGHBI, NAWAL EL. KHALAS SAMEHT . S.l: Midwesttapes, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Riz̤vī, Nihāl. Mujhko samjho. Bārahbankī: Nihāl Riz̤vī, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "SAMDH1"

1

Marcaurelle, Roger. „Samādhi“. In Hinduism and Tribal Religions, 1382–85. Dordrecht: Springer Netherlands, 2022. http://dx.doi.org/10.1007/978-94-024-1188-1_1618.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

de Silva, Suresh, Corine St. Gelais, Nagaraja Tirumuru und Li Wu. „Counteraction of SAMHD1 by Vpx“. In Encyclopedia of AIDS, 1–11. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-9610-6_375-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

de Silva, Suresh, Corine St. Gelais, Nagaraja Tirumuru und Li Wu. „Counteraction of SAMHD1 by Vpx“. In Encyclopedia of AIDS, 385–94. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7101-5_375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rao, K. Ramakrishna. „Yoga as Samādhi“. In Foundations of Yoga Psychology, 1–34. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5409-9_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pflueger, Lloyd W. „Samādhi as True Death in the Yogasūtra“. In Death, Dying, and Mysticism, 203–18. New York: Palgrave Macmillan US, 2015. http://dx.doi.org/10.1057/9781137472083_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Paranjpe, Anand. „The transformation of consciousness in Samādhi (I)“. In Understanding Yoga Psychology, 78–90. London: Routledge India, 2023. http://dx.doi.org/10.4324/9781003370697-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Paranjpe, Anand. „The transformation of consciousness in Samādhi (II)“. In Understanding Yoga Psychology, 91–110. London: Routledge India, 2023. http://dx.doi.org/10.4324/9781003370697-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khaslan, Zaki, Noor Hidayah Mohd Yunus, Mohd Shahrul Mohd Nadzir, Jahariah Sampe, Noorazlina Mohamad Salih und Kemal Maulana Alhasa. „IoT-Based Indoor Air Quality Monitoring System Using SAMD21 ARM Cortex Processor“. In Advanced Structured Materials, 245–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92964-0_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kolm, Serge-Christophe. „Happiness-Freedom: Who Suffers? From Dukkha to Samadhi“. In The Pursuit of Happiness and the Traditions of Wisdom, 23–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04744-7_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hankey, Alex. „A New Information Theory Explains Śūnya in Samādhi“. In Quantum Reality and Theory of Śūnya, 379–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1957-0_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "SAMDH1"

1

Margeli, Mireia, Eudald Felip, Lucia Gutierrez Chamorro, Eva Riveira, Laura Layos, Teresa Moran, Margarita Romeo, Anna Matinez-Cardús und Ester Ballana. „Abstract LB112: SAMHD1: A new Prognostic Marker in Breast Cancer (BC)“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-lb112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kaushik, M. K., Pallavi Guda, Nikhila Yettapu, Premsai Talari, Neelima Mitta und Lavanya Ganta. „SAMIDHA –Onboard Digital Fuel Monitoring System“. In 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). IEEE, 2018. http://dx.doi.org/10.1109/iccsdet.2018.8821233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Margeli, Mireia, Eudald Felip, Maica Gomez, Pedro Fernandez, Laia Pérez-Roca, Eva Riveira-Muñoz, Anna Martinez-Cardús et al. „Abstract P3-08-32: Predictive value of SAMHD1 expression in early relapse breast cancer“. In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p3-08-32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

BURLET, N., Y. LE GALL, S. DELAYES, S. DUGELAY und F. NOVELLA. „INTENSIVE RESOLUTION MEASUREMENT WITH THE SAMDIS MULTI-ASPECT SAS“. In Synthetic Aperture Sonar and Synthetic Aperture Radar 2023. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/15935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Brand, Julia, Steve Madden, Andrei V. Rode, Ludovic Rapp und Alison Wain. „Femtosecond pulse laser cleaning of Makrana marble and semi- precious stones for the preservation of the Holy Samadh“. In IABSE Congress, New Delhi 2023: Engineering for Sustainable Development. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/newdelhi.2023.0372.

Der volle Inhalt der Quelle
Annotation:
<p>This study examines the use of heat-free femtosecond pulse laser technology for the cleaning of Makrana marble and semi-precious stones from the Soami Bagh Samadh temple in Agra, India. We determined the ablation thresholds of the semi-precious stones used in the inlay stonework with femtosecond laser pulses and demonstrated that laser ablation can effectively remove dust layers and environmental staining from the marble surfaces without damaging the original material. We demonstrated, by using optical microscopy, colorimetry, scanning electron microscopy and Raman spectroscopy, that femtosecond laser processing of surfaces reduced the risk of thermal damage due to minimal heat generation and allowed the preservation of the original surface structure. This research suggests that femtosecond pulse laser technology can be a sustainable and effective cleaning method for heritage places such as the Holy Samadh temple.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Felip, Eudald, Roger Badia, Mireia Margelí, Marc Castellví, Vanesa Quiroga, Iris Teruel, Beatriz Cirauqui et al. „Abstract P5-05-14: Cyclin-dependent kinases inhibitors improve antimetabolite drug potency depending on SAMHD1 expression“. In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p5-05-14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bryant, Victoria, Jasmine Wong, Jason Schwartz, Tamara Lamprecht, Jing Ma, Charles Mullighan, Mignon Loh, Kevin Shannon und Jeffery Klco. „Abstract 2063:SAMD9/SAMD9Lmutations in familial monosomy 7“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2063.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sendon, C., Y. A. Collado und A. E. Esquibies. „De Novo Variant of the SAMD9 Gene: Mirage Syndrome“. In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Daddacha, Waaqo. „Abstract 1744: SAMHD1 expression and impact on clinical outcome in diffuse large B-cell lymphoma: a potential therapeutic target“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1744.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Daddacha, Waaqo. „Abstract 1744: SAMHD1 expression and impact on clinical outcome in diffuse large B-cell lymphoma: a potential therapeutic target“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1744.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "SAMDH1"

1

Malla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Malla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Malla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.245.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Malla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Malla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.244.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Malla, S. P. Nepal Madhyasthata Samuha; Jalbire Women's Community Forestry Group. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.245.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1996. http://dx.doi.org/10.53055/icimod.242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bhatia, A. Nepal Madhyasthata Samuha Seminar on Conflict Resolution in Natural Resources. Kathmandu, Nepal: International Centre for Integrated Mountain Development (ICIMOD), 1995. http://dx.doi.org/10.53055/icimod.203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie