Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Salt marsh.

Zeitschriftenartikel zum Thema „Salt marsh“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Salt marsh" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Haacks, Manfred, und Dietbert Thannheiser. „The salt-marsh vegetation of New Zealand“. Phytocoenologia 33, Nr. 2-3 (01.06.2003): 267–88. http://dx.doi.org/10.1127/0340-269x/2003/0033-0267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Silvestri, Sonia, Marco Marani, Jeff Settle, Fabio Benvenuto und Alessandro Marani. „Salt marsh vegetation radiometry“. Remote Sensing of Environment 80, Nr. 3 (Juni 2002): 473–82. http://dx.doi.org/10.1016/s0034-4257(01)00325-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Broome, Stephen W., Ernest D. Seneca und William W. Woodhouse. „Tidal salt marsh restoration“. Aquatic Botany 32, Nr. 1-2 (Oktober 1988): 1–22. http://dx.doi.org/10.1016/0304-3770(88)90085-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Meyer, David L., und Martin H. Posey. „Influence of Salt Marsh Size and Landscape Setting on Salt Marsh Nekton Populations“. Estuaries and Coasts 37, Nr. 3 (25.09.2013): 548–60. http://dx.doi.org/10.1007/s12237-013-9707-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Guimond, Julia, und Joseph Tamborski. „Salt Marsh Hydrogeology: A Review“. Water 13, Nr. 4 (20.02.2021): 543. http://dx.doi.org/10.3390/w13040543.

Der volle Inhalt der Quelle
Annotation:
Groundwater–surface water exchange in salt marsh ecosystems mediates nearshore salt, nutrient, and carbon budgets with implications for biological productivity and global climate. Despite their importance, a synthesis of salt marsh groundwater studies is lacking. In this review, we summarize drivers mediating salt marsh hydrogeology, review field and modeling techniques, and discuss patterns of exchange. New data from a Delaware seepage meter study are reported which highlight small-scale spatial variability in exchange rates. A synthesis of the salt marsh hydrogeology literature reveals a positive relationship between tidal range and submarine groundwater discharge but not porewater exchange, highlighting the multidimensional drivers of marsh hydrogeology. Field studies are heavily biased towards microtidal systems of the US East Coast, with little global information available. A preliminary estimate of marsh porewater exchange along the Mid-Atlantic and South Atlantic Bights is 8–30 × 1013 L y−1, equivalent to recirculating the entire volume of seawater overlying the shelf through tidal marsh sediments in ~30–90 years. This review concludes with a discussion of critical questions to address that will decrease uncertainty in global budget estimates and enhance our capacity to predict future responses to global climate change.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gulzar, Salman, M. Ajmal Khan und Irwin A. Ungar. „Salt Tolerance of a Coastal Salt Marsh Grass“. Communications in Soil Science and Plant Analysis 34, Nr. 17-18 (November 2003): 2595–605. http://dx.doi.org/10.1081/css-120024787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ormsby, E. „A Salt Marsh Near Truro“. Literary Imagination 6, Nr. 1 (01.01.2004): 148. http://dx.doi.org/10.1093/litimag/6.1.148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Drake, Bert G. „Photosynthesis of salt marsh species“. Aquatic Botany 34, Nr. 1-3 (Juli 1989): 167–80. http://dx.doi.org/10.1016/0304-3770(89)90055-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vernberg, F. John. „Salt-marsh processes: A Review“. Environmental Toxicology and Chemistry 12, Nr. 12 (Dezember 1993): 2167–95. http://dx.doi.org/10.1002/etc.5620121203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

de Groot, Alma V., Roos M. Veeneklaas und Jan P. Bakker. „Sand in the salt marsh: Contribution of high-energy conditions to salt-marsh accretion“. Marine Geology 282, Nr. 3-4 (April 2011): 240–54. http://dx.doi.org/10.1016/j.margeo.2011.03.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Campbell, Anthony, und Yeqiao Wang. „Assessment of Salt Marsh Change on Assateague Island National Seashore Between 1962 and 2016“. Photogrammetric Engineering & Remote Sensing 86, Nr. 3 (01.03.2020): 187–94. http://dx.doi.org/10.14358/pers.86.3.187.

Der volle Inhalt der Quelle
Annotation:
Salt marshes provide extensive ecosystem services, including high biodiversity, denitrification, and wave attenuation. In the mid-Atlantic, sea level rise is predicted to affect salt marsh ecosystems severely. This study mapped the entirety of Assateague Island with Very High Resolution satellite imagery and object-based methods to determine an accurate salt marsh baseline for change analysis. Topobathy-metric light detection and ranging was used to map the salt marsh and model expected tidal effects. The satellite imagery, collected in 2016 and classified at two hierarchical thematic schemes, were compared to determine appropriate thematic richness. Change analysis between this 2016 map and both a manually delineated 1962 salt marsh extent and image classification of the island from 1994 determined rates off change. The study found that from 1962 to 1994, salt marsh expanded by 4.01 ha/year, and from 1994 to 2016 salt marsh was lost at a rate of -3.4 ha/ year. The study found that salt marsh composition, (percent vegetated salt marsh) was significantly influenced by elevation, the length of mosquito ditches, and starting salt marsh composition. The study illustrates the importance of remote sensing monitoring for understanding site-specific changes to salt marsh environments and the barrier island system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bakker, J. P., und Y. Vries. „Germination and early establishment of lower salt-marsh species in grazed and mown salt marsh“. Journal of Vegetation Science 3, Nr. 2 (April 1992): 247–52. http://dx.doi.org/10.2307/3235686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Geissel, W., H. Shellhammer und H. T. Harvey. „The Ecology of the Salt-Marsh Harvest Mouse (Reithrodontomys raviventris) in a Diked Salt Marsh“. Journal of Mammalogy 69, Nr. 4 (29.11.1988): 696–703. http://dx.doi.org/10.2307/1381624.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Bakker, J. P., L. Gálvez Bravo und A. M. Mouissie. „Dispersal by cattle of salt-marsh and dune species into salt-marsh and dune communities“. Plant Ecology 197, Nr. 1 (12.10.2007): 43–54. http://dx.doi.org/10.1007/s11258-007-9358-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Leonardi, Nicoletta, Neil K. Ganju und Sergio Fagherazzi. „A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes“. Proceedings of the National Academy of Sciences 113, Nr. 1 (22.12.2015): 64–68. http://dx.doi.org/10.1073/pnas.1510095112.

Der volle Inhalt der Quelle
Annotation:
Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Calabon, Mark S., E. B. Gareth Jones, Itthayakorn Promputtha und Kevin D. Hyde. „Fungal Biodiversity in Salt Marsh Ecosystems“. Journal of Fungi 7, Nr. 8 (09.08.2021): 648. http://dx.doi.org/10.3390/jof7080648.

Der volle Inhalt der Quelle
Annotation:
This review brings together the research efforts on salt marsh fungi, including their geographical distribution and host association. A total of 486 taxa associated with different hosts in salt marsh ecosystems are listed in this review. The taxa belong to three phyla wherein Ascomycota dominates the taxa from salt marsh ecosystems accounting for 95.27% (463 taxa). The Basidiomycota and Mucoromycota constitute 19 taxa and four taxa, respectively. Dothideomycetes has the highest number of taxa, which comprises 47.12% (229 taxa), followed by Sordariomycetes with 167 taxa (34.36%). Pleosporales is the largest order with 178 taxa recorded. Twenty-seven genera under 11 families of halophytes were reviewed for its fungal associates. Juncus roemerianus has been extensively studied for its associates with 162 documented taxa followed by Phragmites australis (137 taxa) and Spartina alterniflora (79 taxa). The highest number of salt marsh fungi have been recorded from Atlantic Ocean countries wherein the USA had the highest number of species recorded (232 taxa) followed by the UK (101 taxa), the Netherlands (74 taxa), and Argentina (51 taxa). China had the highest number of salt marsh fungi in the Pacific Ocean with 165 taxa reported, while in the Indian Ocean, India reported the highest taxa (16 taxa). Many salt marsh areas remain unexplored, especially those habitats in the Indian and Pacific Oceans areas that are hotspots of biodiversity and novel fungal taxa based on the exploration of various habitats.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Chen, Z. P., J. C. Dai, J. W. Zeng und R. J. Li. „Application of Hydro-morphodynamic Modelling in Coastal Salt Marsh Management“. Journal of Physics: Conference Series 2486, Nr. 1 (01.05.2023): 012037. http://dx.doi.org/10.1088/1742-6596/2486/1/012037.

Der volle Inhalt der Quelle
Annotation:
Abstract Salt marshes are widespread in estuarine coastal areas and are one of the most productive natural ecosystems in the world. More importantly, the role of salt marshes in coastal protection is of increasing interest, as salt marshes significantly reduce wave height and stabilize substrates. However, the application of hydrodynamic models for coastal salt marsh management is still uncommon. In this study, TELEMAC is used to set up a hydro-morphodynamic model to simulate the dynamic process in the study area. After that, the influence of hydrodynamic stress on the salt marshes under natural conditions was analysed and the feasibility of applying artificial structures to restore salt marshes was discussed. Finally, the long-term evolution of salt marsh platform is modelled. The results show that salt marsh vegetation is strongly influenced by coastal dynamics. The artificial restoration measures such as submerged dikes have the potential to restore or rehabilitate salt marshes by attenuating the currents on tidal flats. The long-term marsh evolution contains both platform raising and channel incision, which forms the unique landscape of tidal salt marsh. The research results of the study can provide theoretical support for the management and restoration of coastal salt marsh wetlands and contribute to disaster prevention and mitigation in the coastal areas.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Siemes, Rutger W. A., Bas W. Borsje, Roy J. Daggenvoorde und Suzanne J. M. H. Hulscher. „Artificial Structures Steer Morphological Development of Salt Marshes: A Model Study“. Journal of Marine Science and Engineering 8, Nr. 5 (05.05.2020): 326. http://dx.doi.org/10.3390/jmse8050326.

Der volle Inhalt der Quelle
Annotation:
Salt marshes are increasingly recognized as resilient and sustainable supplements to traditional engineering structures for protecting coasts against flooding. Nevertheless, many salt marshes face severe erosion. There is a consensus that providing structures that create sheltered conditions from high energetic conditions can improve the potential for salt marsh growth. However, little proof is provided on the explicit influence of structures to promote salt marsh growth. This paper investigates how artificial structures can be used to steer the morphological development of salt marshes. A morphological model (Delft3D Flexible Mesh) was applied, which enabled the analysis of various artificial structures with realistic representation. A salt marsh in the Wadden Sea which has seen heavy erosion (lateral retreat rate of 0.9 m/year) served as case study. We simulate both daily and storm conditions. Hereby, vegetation is represented by an increased bed roughness. The model is able to simulate the governing processes of salt marsh development. Results show that, without artificial structures, erosion of the salt marsh and tidal flat continues. With structures implemented, results indicate that there is potential for salt marsh growth in the study area. Moreover, traditional structures, which were widely implemented in the past, proved to be most effective to stimulate marsh growth. More broadly, the paper indicates how morphological development of a salt marsh can be steered by various configurations of artificial structures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Seyler, Lauren M., Lora M. McGuinness und Lee J. Kerkhof. „Crenarchaeal heterotrophy in salt marsh sediments“. ISME Journal 8, Nr. 7 (20.02.2014): 1534–43. http://dx.doi.org/10.1038/ismej.2014.15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ingoldsby, Joseph Emmanuel. „Vanishing Landscapes: The Atlantic Salt Marsh“. Leonardo 42, Nr. 2 (April 2009): 124–31. http://dx.doi.org/10.1162/leon.2009.42.2.124.

Der volle Inhalt der Quelle
Annotation:
The author, trained in art and landscape architecture, utilizes observation of nature and culture as a central focus in his art. The work involves research, scientific collaboration and examination, documentation, analysis and synthesis using art, science and technology for environmental advocacy. The focus for these works has been on the coastal landscape of New England, the imprint of humans on land and sea, and the impact of climate change on the marine landscape and fisheries of New England.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Smith, Lora M., und John R. Reinfelder. „Mercury volatilization from salt marsh sediments“. Journal of Geophysical Research: Biogeosciences 114, G2 (Juni 2009): n/a. http://dx.doi.org/10.1029/2009jg000979.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Renner, Rebecca. „California salt marsh contaminates swimming beach“. Environmental Science & Technology 35, Nr. 15 (August 2001): 320A—321A. http://dx.doi.org/10.1021/es0124360.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Townend, Ian, Caroline Fletcher, Michiel Knappen und Kate Rossington. „A review of salt marsh dynamics“. Water and Environment Journal 25, Nr. 4 (16.09.2010): 477–88. http://dx.doi.org/10.1111/j.1747-6593.2010.00243.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Knott, Jayne Fifield, William Kensett Nuttle und Harold Field Hemond. „Hydrologic parameters of salt marsh peat“. Hydrological Processes 1, Nr. 2 (März 1987): 211–20. http://dx.doi.org/10.1002/hyp.3360010208.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Paul, Edward. „Modeling productivity of a salt marsh“. Cell Biophysics 11, Nr. 1 (Dezember 1987): 57–63. http://dx.doi.org/10.1007/bf02797112.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Campbell, Anthony, und Yeqiao Wang. „High Spatial Resolution Remote Sensing for Salt Marsh Mapping and Change Analysis at Fire Island National Seashore“. Remote Sensing 11, Nr. 9 (09.05.2019): 1107. http://dx.doi.org/10.3390/rs11091107.

Der volle Inhalt der Quelle
Annotation:
Salt marshes are changing due to natural and anthropogenic stressors such as sea level rise, nutrient enrichment, herbivory, storm surge, and coastal development. This study analyzes salt marsh change at Fire Island National Seashore (FIIS), a nationally protected area, using object-based image analysis (OBIA) to classify a combination of data from Worldview-2 and Worldview-3 satellites, topobathymetric Light Detection and Ranging (LiDAR), and National Agricultural Imagery Program (NAIP) aerial imageries acquired from 1994 to 2017. The salt marsh classification was trained and tested with vegetation plot data. In October 2012, Hurricane Sandy caused extensive overwash and breached a section of the island. This study quantified the continuing effects of the breach on the surrounding salt marsh. The tidal inundation at the time of image acquisition was analyzed using a topobathymetric LiDAR-derived Digital Elevation Model (DEM) to create a bathtub model at the target tidal stage. The study revealed geospatial distribution and rates of change within the salt marsh interior and the salt marsh edge. The Worldview-2/Worldview-3 imagery classification was able to classify the salt marsh environments accurately and achieved an overall accuracy of 92.75%. Following the breach caused by Hurricane Sandy, bayside salt marsh edge was found to be eroding more rapidly (F1, 1597 = 206.06, p < 0.001). However, the interior panne/pool expansion rates were not affected by the breach. The salt marsh pannes and pools were more likely to revegetate if they had a hydrological connection to a mosquito ditch (χ2 = 28.049, p < 0.001). The study confirmed that the NAIP data were adequate for determining rates of salt marsh change with high accuracy. The cost and revisit time of NAIP imagery creates an ideal open data source for high spatial resolution monitoring and change analysis of salt marsh environments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kuroda, Naoki, Katsuhide Yokoyama und Tadaharu Ishikawa. „Development of a Practical Model for Predicting Soil Salinity in a Salt Marsh in the Arakawa River Estuary“. Water 13, Nr. 15 (28.07.2021): 2054. http://dx.doi.org/10.3390/w13152054.

Der volle Inhalt der Quelle
Annotation:
Our group has studied the spatiotemporal variation of soil and water salinity in an artificial salt marsh along the Arakawa River estuary and developed a practical model for predicting soil salinity. The salinity of the salt marsh and the water level of a nearby channel were measured once a month for 13 consecutive months. The vertical profile of the soil salinity in the salt marsh was measured once monthly over the same period. A numerical flow simulation adopting the shallow water model faithfully reproduced the salinity variation in the salt marsh. Further, we developed a soil salinity model to estimate the soil salinity in a salt marsh in Arakawa River. The vertical distribution of the soil salinity in the salt marsh was uniform and changed at almost the same time. The hydraulic conductivity of the soil, moreover, was high. The uniform distribution of salinity and high hydraulic conductivity could be explained by the vertical and horizontal transport of salinity through channels burrowed in the soil by organisms. By combining the shallow water model and the soil salinity model, the soil salinity of the salt marsh was well reproduced. The above results suggest that a stable brackish ecotone can be created in an artificial salt marsh using our numerical model as a design tool.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Adams, Janine B., Jacqueline L. Raw, Taryn Riddin, Johan Wasserman und Lara Van Niekerk. „Salt Marsh Restoration for the Provision of Multiple Ecosystem Services“. Diversity 13, Nr. 12 (19.12.2021): 680. http://dx.doi.org/10.3390/d13120680.

Der volle Inhalt der Quelle
Annotation:
Restoration of salt marsh is urgent, as these ecosystems provide natural coastal protection from sea-level rise impacts, contribute towards climate change mitigation, and provide multiple ecosystem services including supporting livelihoods. This study identified potential restoration sites for intervention where agricultural and degraded land could be returned to salt marsh at a national scale in South African estuaries. Overall, successful restoration of salt marsh in some estuaries will require addressing additional pressures such as freshwater inflow reduction and deterioration of water quality. Here, we present, a socio-ecological systems framework for salt marsh restoration that links salt marsh state and the well-being of people to guide meaningful and implementable management and restoration interventions. The framework is applied to a case study at the Swartkops Estuary where the primary restoration intervention intends to route stormwater run-off to abandoned salt works to re-create aquatic habitat for waterbirds, enhance carbon storage, and provide nutrient filtration. As the framework is generalized, while still allowing for site-specific pressures to be captured, there is potential for it to be applied at the national scale, with the largest degraded salt marsh areas set as priorities for such an initiative. It is estimated that ~1970 ha of salt marsh can be restored in this way, and this represents a 14% increase in the habitat cover for the country. Innovative approaches to restoring and improving condition are necessary for conserving salt marshes and the benefits they provide to society.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Hinshaw, Sarra E., Corianne Tatariw, Nikaela Flournoy, Alice Kleinhuizen, Caitlin Taylor, Patricia A. Sobecky und Behzad Mortazavi. „Vegetation Loss Decreases Salt Marsh Denitrification Capacity: Implications for Marsh Erosion“. Environmental Science & Technology 51, Nr. 15 (11.07.2017): 8245–53. http://dx.doi.org/10.1021/acs.est.7b00618.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

O’Connor, Mary I., Christy R. Violin, Andrea Anton, Laura M. Ladwig und Michael F. Piehler. „Salt marsh stabilization affects algal primary producers at the marsh edge“. Wetlands Ecology and Management 19, Nr. 2 (08.01.2011): 131–40. http://dx.doi.org/10.1007/s11273-010-9206-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Forbrich, Inke, und Anne E. Giblin. „Marsh‐atmosphere CO 2 exchange in a New England salt marsh“. Journal of Geophysical Research: Biogeosciences 120, Nr. 9 (September 2015): 1825–38. http://dx.doi.org/10.1002/2015jg003044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bertness, Mark D., Laura Gough und Scott W. Shumway. „Salt Tolerances and The Distribution of Fugitive Salt Marsh Plants“. Ecology 73, Nr. 5 (Oktober 1992): 1842–51. http://dx.doi.org/10.2307/1940035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Partridge, T. R., und J. B. Wilson. „Salt tolerance of salt marsh plants of Otago, New Zealand“. New Zealand Journal of Botany 25, Nr. 4 (Oktober 1987): 559–66. http://dx.doi.org/10.1080/0028825x.1987.10410086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Duarte, B., J. Freitas, T. Couto, J. Valentim, J. M. Dias, H. Silva, J. C. Marques und I. Caçador. „New multi-metric Salt Marsh Sediment Microbial Index (SSMI) application to salt marsh sediments ecological status assessment“. Ecological Indicators 29 (Juni 2013): 390–97. http://dx.doi.org/10.1016/j.ecolind.2013.01.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Ouyang, X., und S. Y. Lee. „Updated estimates of carbon accumulation rates in coastal marsh sediments“. Biogeosciences 11, Nr. 18 (19.09.2014): 5057–71. http://dx.doi.org/10.5194/bg-11-5057-2014.

Der volle Inhalt der Quelle
Annotation:
Abstract. Studies on carbon stock in salt marsh sediments have increased since the review by Chmura et al. (2003). However, uncertainties exist in estimating global carbon storage in these vulnerable coastal habitats, thus hindering the assessment of their importance. Combining direct data and indirect estimation, this study compiled studies involving 143 sites across the Southern and Northern hemispheres, and provides an updated estimate of the global average carbon accumulation rate (CAR) at 244.7 g C m−2 yr−1 in salt marsh sediments. Based on region-specific CAR and estimates of salt marsh area in various geographic regions between 40° S to 69.7° N, total CAR in global salt marsh sediments is estimated at ~10.2 Tg C yr−1. Latitude, tidal range and elevation appear to be important drivers for CAR of salt marsh sediments, with considerable variation among different biogeographic regions. The data indicate that while the capacity for carbon sequestration by salt marsh sediments ranked the first amongst coastal wetland and forested terrestrial ecosystems, their carbon budget was the smallest due to their limited and declining global areal extent. However, some uncertainties remain for our global estimate owing to limited data availability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Jacobson, Heather A., und George L. Jacobson Jr. „Variability of vegetation in tidal marshes of Maine, U.S.A.“ Canadian Journal of Botany 67, Nr. 1 (01.01.1989): 230–38. http://dx.doi.org/10.1139/b89-032.

Der volle Inhalt der Quelle
Annotation:
Systematic studies of vegetation on 18 salt marshes along the coast of Maine show that the vegetation is highly variable in species composition, species richness, and zonation pattern. Marshes with high species richness are found in relatively stable geologic settings, while unstable marshes at the base of erodible bluffs have low species richness. Species composition is influenced by freshwater input. Salt-marsh zonation varies greatly in both the number of zones present per marsh and the species assemblages within zones. With a few notable exceptions, the vegetation of salt marshes in southern Maine is similar to that of marshes in southern New England. Salt-marsh vegetation in northeastern Maine is more similar to that of marshes in the Bay of Fundy region. Key words: tidal marsh, salt marsh, Maine, vegetation, New England, Bay of Fundy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Richards, David F., Adam M. Milewski, Steffan Becker, Yonesha Donaldson, Lea J. Davidson, Fabian J. Zowam, Jay Mrazek und Michael Durham. „Evaluation and Analysis of Remote Sensing-Based Approach for Salt Marsh Monitoring“. Remote Sensing 16, Nr. 1 (19.12.2023): 2. http://dx.doi.org/10.3390/rs16010002.

Der volle Inhalt der Quelle
Annotation:
In the United States (US), salt marshes are especially vulnerable to the effects of projected sea level rise, increased storm frequency, and climatic changes. Sentinel-2 data offer the opportunity to observe the land surface at high spatial resolutions (10 m). The Sentinel-2 data, encompassing Cumberland Island National Seashore, Fort Pulaski National Monument, and Canaveral National Seashore, were analyzed to identify temporal changes in salt marsh presence from 2016 to 2020. ENVI-derived unsupervised and supervised classification algorithms were applied to determine the most appropriate procedure to measure distant areas of salt marsh increases and decreases. The Normalized Difference Vegetation Index (NDVI) was applied to describe the varied vegetation biomass spatially. The results from this approach indicate that the ENVI-derived maximum likelihood classification provides a statistical distribution and calculation of the probability (>90%) that the given pixels represented both water and salt marsh environments. The salt marshes captured by the maximum likelihood classification indicated an overall decrease in salt marsh area presence. The NDVI results displayed how the varied vegetation biomass was analogous to the occurrence of salt marsh changes. Areas representing the lowest NDVI values (−0.1 to 0.1) corresponded to bare soil areas where a salt marsh decrease was detected.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Brooks, Helen, Iris Möller, Tom Spencer, Kate Royse und Simon James Price. „GEOTECHNICAL PROPERTIES OF SALT MARSH AND TIDAL FLAT SUBSTRATES AT TILLINGHAM, ESSEX, UK.“ Coastal Engineering Proceedings, Nr. 36 (30.12.2018): 55. http://dx.doi.org/10.9753/icce.v36.papers.55.

Der volle Inhalt der Quelle
Annotation:
Salt marshes and, to a lesser extent, tidal flats, attenuate incoming hydrodynamic energy, thus reducing flood and erosion risk in the coastal hinterland. However, marshes are declining both globally and regionally (the Northwest European region). Salt marsh resistance to incoming hydrodynamic forcing depends on marsh biological, geochemical and geotechnical properties. However, there currently exists no systematic study of marsh geotechnical properties and how these may impact both marsh edge and marsh surface erosion processes (e.g. surface removal, cliff undercutting, gravitational slumping). This has led to poor parameterization of marsh evolution models. Here, we present a systematic study of salt marsh and tidal flat geotechnical properties (shear strength, bulk density, compressibility, plasticity and particle size) at Tillingham, Essex, UK.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dixon, Daniel. „EVALUATION OF CDC LIGHT TRAP, BG SENTINEL TRAP, AND MMX TRAP FOR THE COLLECTION OF SALT MARSH MOSQUITOES IN ANASTASIA STATE PARK, SAINT AUGUSTINE, FLORIDA“. Journal of the Florida Mosquito Control Association 66, Nr. 1 (14.01.2021): 64–67. http://dx.doi.org/10.32473/jfmca.v66i1.127626.

Der volle Inhalt der Quelle
Annotation:
Salt marsh mosquitoes are major nuisance pests during the periods of high mosquito activity, especially after major storm events. In 2016-2017, Saint John’s County, Florida, USA was struck by two major hurricanes that resulted in multiple outbreaks of salt marsh mosquito populations. To optimize the surveillance of two salt marsh mosquitoes, (Aedes taeniorhynchus and Ae. sollicitans, three types of traps (the Centers for Disease Control (CDC) Light trap, Biogents Sentinel (BG) trap and Counter Flow Geometry Model (MMX) trap were tested for their capacity to capture the highest numbers of high quality live specimens for laboratory bioassays. Each trap type was tested in Anastasia State Park, located along a major salt marsh area in Saint John’s County. Although the MMX trap captured most of the salt marsh mosquitoes collected, the numbers of mosquitoes captured was not statistically significant compared to the other trap types. However, there was a significant difference in the numbers between Ae. taeniorhynchus and Ae. sollicitans in the MMX traps. The MMX trap is preferred for capturing salt marsh mosquitoes that are in high quality for the CDC bottle bioassays.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Chen, M. Y., F. Luo und J. C. Dai. „Study on the Influence of Salt Marsh Vegetation on Tidal Current and Sediment Transport in Intertidal Zone“. Journal of Physics: Conference Series 2486, Nr. 1 (01.05.2023): 012049. http://dx.doi.org/10.1088/1742-6596/2486/1/012049.

Der volle Inhalt der Quelle
Annotation:
Abstract Due to the sensitivity of the environment and immoderate human activities, the coastal zone in China is facing resource conflicts and environmental pressures. Salt marsh vegetation is regarded as an important measure for coastal ecological restoration. Therefore, it is of practical significance to study the influence of salt marsh vegetation on hydro-sediment dynamics. Based on the measured topography and tidal sediment data, a generalized model of salt marsh vegetation is established to study its effects on the dynamics of nearshore water and sediment. The results show that salt marsh vegetation has prominent effect of attenuating flow velocity and promoting sedimentation, and the ability differs depending on vegetation. Salt marsh vegetation can promote the development of tidal channels to shore, causing intensified erosion in the deep trough. The expansion of the vegetation area will allow the tidal channels to extend small branches to shore and connect with the vegetation front.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Bertness, Mark D. „Interspecific Interactions among High Marsh Perennials in a New England Salt Marsh“. Ecology 72, Nr. 1 (Februar 1991): 125–37. http://dx.doi.org/10.2307/1938908.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Lawrence, D. S. L., J. R. L. Allen und G. M. Havelock. „Salt Marsh Morphodynamics: an Investigation of Tidal Flows and Marsh Channel Equilibrium“. Journal of Coastal Research 201 (Januar 2004): 301–16. http://dx.doi.org/10.2112/1551-5036(2004)20[301:smmaio]2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Valiela, Ivan, und Carol S. Rietsma. „Disturbance of salt marsh vegetation by wrack mats in Great Sippewissett Marsh“. Oecologia 102, Nr. 1 (April 1995): 106–12. http://dx.doi.org/10.1007/bf00333317.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Eiser, William C., und Björn Kjerfve. „Marsh topography and hypsometric characteristics of a South Carolina salt marsh basin“. Estuarine, Coastal and Shelf Science 23, Nr. 5 (November 1986): 595–605. http://dx.doi.org/10.1016/0272-7714(86)90101-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Teal, John M., und Brian L. Howes. „Interannual variability of a salt-marsh ecosystem“. Limnology and Oceanography 41, Nr. 4 (Juni 1996): 802–9. http://dx.doi.org/10.4319/lo.1996.41.4.0802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Riddin, T., und JB Adams. „Salt marsh erosion in a microtidal estuary“. African Journal of Marine Science 43, Nr. 2 (03.04.2021): 265–73. http://dx.doi.org/10.2989/1814232x.2021.1906319.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Ahalya, A., und K. Suresh. „Salt Marsh Ecology in Karainagar, Sri Lanka“. Scientific Research Journal 8, Nr. 6 (25.06.2020): 23–29. http://dx.doi.org/10.31364/scirj/v8.i6.2020.p0620779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Fagherazzi, Sergio. „The ephemeral life of a salt marsh“. Geology 41, Nr. 8 (August 2013): 943–44. http://dx.doi.org/10.1130/focus082013.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Smith-White, A. R. „Physiological differentiation in a salt-marsh grass“. Wetlands Australia 1, Nr. 1 (04.01.2010): 20. http://dx.doi.org/10.31646/wa.49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Simon, Richard M., und Richard H. Simon. „Mid-Atlantic Salt-Marsh Shorelines: Mathematical Commonalities“. Estuaries 18, Nr. 1 (März 1995): 199. http://dx.doi.org/10.2307/1352630.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie