Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Salinity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Salinity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Salinity"
Widawati, Dieng, Gunawan Widi Santosa und Ervia Yudiati. „Pengaruh Pertumbuhan Spirulina platensis terhadap Kandungan Pigmen beda Salinitias“. Journal of Marine Research 11, Nr. 1 (04.02.2022): 61–70. http://dx.doi.org/10.14710/jmr.v11i1.30096.
Der volle Inhalt der QuelleKalangi, Patrice NI, Anselun Mandagi, Kawilarang WA Masengi, Alfret Luasunaung, Fransisco PT Pangalila und Masamitsu Iwata. „SEBARAN SUHU DAN SALINITAS DI TELUK MANADO“. JURNAL PERIKANAN DAN KELAUTAN TROPIS 9, Nr. 2 (01.08.2013): 70. http://dx.doi.org/10.35800/jpkt.9.2.2013.4179.
Der volle Inhalt der QuelleNirmala, K., D. P. Lesmono und D. Djokosetiyanto. „Effect of Salinity Adaptation Technique on Survival and Growth Rate of Patin Catfish, Pangasius sp.“ Jurnal Akuakultur Indonesia 4, Nr. 1 (01.01.2007): 25. http://dx.doi.org/10.19027/jai.4.25-30.
Der volle Inhalt der QuelleKasih, Irla Deskia, Nanda Mayani und Cut Nur Ichsan. „Pengaruh Waktu dan Tingkat Salinitas terhadap Pertumbuhan Vegetatif Tanaman Padi (Oriza sativa L.)“. Jurnal Ilmiah Mahasiswa Pertanian 7, Nr. 2 (01.05.2022): 80–86. http://dx.doi.org/10.17969/jimfp.v7i2.20132.
Der volle Inhalt der QuellePrayoga, Gigih Ibnu, Eries Dyah Mustikarini und Novin Wandra. „Seleksi kacang tanah (Arachis hypogaea L.) lokal Bangka toleran cekaman salinitas“. Jurnal Agro 5, Nr. 2 (31.12.2018): 103–13. http://dx.doi.org/10.15575/3366.
Der volle Inhalt der QuellePatty, Simon I. „Distribution Temperature, Salinity And Dissolved Oxygen In Waters Kema, North Sulawesi“. JURNAL ILMIAH PLATAX 1, Nr. 3 (30.08.2013): 148. http://dx.doi.org/10.35800/jip.1.3.2013.2580.
Der volle Inhalt der QuelleHadie, Wartono, Irin Iriana Kusmini und Lies Emmawati Hadie. „RADE-OFFS DAN COST OF PLASTICITY SIFAT PERTUMBUHAN DAN REPRODUKSI PADA PERSILANGAN UDANG GALAH (Macrobrachium rosenbergii) DALAM SALINITAS BERBEDA“. Jurnal Riset Akuakultur 1, Nr. 1 (15.11.2016): 13. http://dx.doi.org/10.15578/jra.1.1.2006.13-19.
Der volle Inhalt der QuelleIzwar, Akmal, Anis Nugrahawati, Irfannur, Yusrizal Akmal, Asih Makarti Muktitama, Rossy Azhar, Syahirman Hakim und Rahma Mulyani. „Efektifitas Sistem Dekapsulasi Dengan Salinitas Berbeda Terhadap Daya Tetas (Hatching Rate) Siste Artemia“. Jurnal Ilmu-ilmu Perikanan dan Budidaya Perairan 19, Nr. 1 (25.06.2024): 1–8. http://dx.doi.org/10.31851/jipbp.v19i1.15940.
Der volle Inhalt der QuelleYuliani, Tina Anggun, Sutrisno Anggoro und Anhar Solichin. „PENGARUH SALINITAS BERBEDA TERHADAP RESPON OSMOTIK, REGULASI ION DAN PERTUMBUHAN IKAN SIDAT (Anguilla sp.) FASE ELVER SELAMA MASA AKLIMASI DAN KULTIVASI“. Management of Aquatic Resources Journal (MAQUARES) 7, Nr. 4 (20.12.2018): 333–41. http://dx.doi.org/10.14710/marj.v7i4.22567.
Der volle Inhalt der QuelleKinsou, Eliane, Abdou Madjid Amoussa, Armel Clément Goudjo Mensah, Julien Koffi Kpinkoun, Françoise Assogba Komlan, Hyacinte Ahissou, Latifou Lagnika und Christophe Bernard Gandonou. „Effet de la salinité sur la floraison, la fructification et la qualité nutritionnelle des fruits du cultivar local Akikon de tomate (Lycopersicon esculentum Mill.) du Bénin“. International Journal of Biological and Chemical Sciences 15, Nr. 2 (23.06.2021): 737–49. http://dx.doi.org/10.4314/ijbcs.v15i2.27.
Der volle Inhalt der QuelleDissertationen zum Thema "Salinity"
Sanoubar, Rabab <1971>. „Salinity Effect on Horticultural Crops: Morphological, Physiological, and Biomolecular Elements of Salinity Stress Response“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6645/1/Sanoubar_Rabab_Tesi.pdf.
Der volle Inhalt der QuelleSanoubar, Rabab <1971>. „Salinity Effect on Horticultural Crops: Morphological, Physiological, and Biomolecular Elements of Salinity Stress Response“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6645/.
Der volle Inhalt der QuelleFarr, C. R. „Salinity Distribution Under Drip Irrigation“. College of Agriculture, University of Arizona (Tucson, AZ), 1985. http://hdl.handle.net/10150/204075.
Der volle Inhalt der QuelleHick, Peter T. „Remote sensing of agricultural salinity“. Thesis, Curtin University, 1987. http://hdl.handle.net/20.500.11937/877.
Der volle Inhalt der QuelleHick, Peter T. „Remote sensing of agricultural salinity“. Curtin University of Technology, Department of Environmental Biology, 1987. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=10930.
Der volle Inhalt der Quelleabsorption.The study evaluated the spatial and spectral characteristics of existing satellite systems such as Thematic Mapper and the Multispectral Scanner on the Landsat series and determined that a spatial resolution of about 20-30 metres was most appropriate for detection of salinity at a scale whereby management could be implemented.Ground electromagnetic techniques were evaluated during the study and the EM-38 Ground Conductivity Unit proved valuable for characterizing salinity status of the sites. The Lowtran Computer Code was used to model atmospheric attenuation and results indicated that the positioning of a narrow shortwave infrared waveband, centred at 1985 nm, is possible.
Sabia, Roberto. „Sea surface salinity retrieval error budget within the esa soil moisture and ocean salinity mission“. Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/30542.
Der volle Inhalt der QuelleSatellite oceanography has become a consolidated integration of conventional in situ monitoring of the oceans. Accurate knowledge of the oceanographic processes and their interaction is crucial for the understanding of the climate system. In this framework, routinely-measured salinity fields will directly aid in characterizing the variations of the global ocean circulation. Salinity is used in predictive oceanographic models, but no capability exists to date to measure it directly and globally. The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission aims at filling this gap through the implementation of a satellite that has the potential to provide synoptically and routinely this information. A novel instrument, the Microwave Imaging Radiometer by Aperture Synthesis, has been developed to observe the sea surface salinity (SSS) over the oceans by capturing images of the emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer and will be launched in early 2009. Like whatsoever remotely-sensed geophysical parameter estimation, the retrieval of salinity is an inverse problem that involves the minimization of a cost function. In order to ensure a reliable estimation of this variable, all the other parameters affecting the measured brightness temperature will have to be taken into account, filtered or quantified. The overall retrieved product will thus be salinity maps in a single satellite overpass over the Earth. The proposed accuracy requirement for the mission is specified as 0.1 ‰ after averaging in a 10-day and 2ºx2º spatio-temporal boxes. In this Ph.D. Thesis several studies have been performed towards the determination of an ocean salinity error budget within the SMOS mission. The motivations of the mission, the rationale of the measurements and the basic concepts of microwave radiometry have been described along with the salinity retrieval main features. The salinity retrieval issues whose influence is critical in the inversion procedure are: • Scene-dependent bias in the simulated measurements, • Radiometric sensitivity (thermal noise) and radiometric accuracy, • L-band forward modeling definition, • Auxiliary data, sea surface temperature (SST) and wind speed, uncertainties, • Constraints in the cost function, especially on salinity term, and • Adequate spatio-temporal averaging. A straightforward concept stems from the statement of the salinity retrieval problem: different tuning and setting of the minimization algorithm lead to different results, and complete awareness of that should be assumed. Based on this consideration, the error budget determination has been progressively approached by evaluating the extent of the impact of different variables and parameterizations in terms of salinity error. The impact of several multi-sources auxiliary data on the final SSS error has been addressed. This gives a first feeling of the quantitative error that should be expected in real upcoming measurements, whilst, in another study, the potential use of reflectometry-derived signals to correct for sea state uncertainty in the SMOS context has been investigated. The core of the work concerned the overall SSS Error Budget. The error sources are consistently binned and the corresponding effects in terms of the averaged SSS error have been addressed in different algorithm configurations. Furthermore, the results of a salinity horizontal variability study, performed by using input data at increasingly variable spatial resolution, are shown. This should assess the capability of retrieved SSS to reproduce mesoscale oceanographic features. Main results and insights deriving from these studies will contribute to the definition of the salinity retrieval algorithm baseline.
Ha, Mi Ae. „Salinity routing in reservoir system modeling“. Thesis, Texas A&M University, 2006. http://hdl.handle.net/1969.1/4963.
Der volle Inhalt der QuelleElmezoghi, Saleh Mohamed. „Physiology of salinity tolerance in maize“. Thesis, University of Liverpool, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433774.
Der volle Inhalt der QuelleBabagolzadeh, Ali. „Salinity tolerance in seven Trifolium species“. Thesis, University of Liverpool, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367195.
Der volle Inhalt der QuelleHossain, Mohammad Rashed. „Salinity tolerance and transcriptomics in rice“. Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5092/.
Der volle Inhalt der QuelleBücher zum Thema "Salinity"
Victoria. Office of the Auditor-General., Hrsg. Salinity. Melbourne: L.V. North, Govt. Printer, 1993.
Den vollen Inhalt der Quelle findenEilers, R. G. Soil salinity Manitoba. [Winnipeg, Canada]: Canada-Manitoba Soil Inventory, Land Resource Research Centre, Research Branch, Agriculture Canada, 1990.
Den vollen Inhalt der Quelle findenLäuchli, André, und Ulrich Lüttge, Hrsg. Salinity: Environment - Plants - Molecules. Dordrecht: Kluwer Academic Publishers, 2004. http://dx.doi.org/10.1007/0-306-48155-3.
Der volle Inhalt der QuelleAshraf, M., M. Ozturk und H. R. Athar, Hrsg. Salinity and Water Stress. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9065-3.
Der volle Inhalt der QuelleTaskforce, Western Australia Salinity. Salinity: A new balance. Western Australia: Salinity Taskforce, 2001.
Den vollen Inhalt der Quelle findenSingh, Raj Vir, M. Tech., Ph. D., Hrsg. Drainage and salinity control. Delhi: Himanshu Publications, 1991.
Den vollen Inhalt der Quelle findenR, Hull John, Nielsen Carl E und Golding Peter 1955-, Hrsg. Salinity-gradient solar ponds. Boca Raton, Fla: CRC Press, 1989.
Den vollen Inhalt der Quelle finden1933-, Läuchli A., und Lüttge Ulrich, Hrsg. Salinity: Environment - plants - molecules. Dordrecht: Kluwer Academic Publishers, 2002.
Den vollen Inhalt der Quelle findenChhabra, Ranbir. Soil salinity and water quality. Brookfield, VT: A.A. Balkema, 1996.
Den vollen Inhalt der Quelle findenTanji, Kenneth K., und Wesley W. Wallender. Agricultural salinity assessment and management. 2. Aufl. Reston, Va: Published by American Society of Civil Engineers, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Salinity"
Marcar, Nico E., Tivi Theiveyanathan und Daryl P. Stevens. „Salinity“. In Treated Wastewater in Agriculture, 286–305. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444328561.ch8.
Der volle Inhalt der QuelleWhitmore, J. S. „Salinity“. In Drought Management on Farmland, 242–51. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9562-9_24.
Der volle Inhalt der QuelleRimmer, Alon, und Ami Nishri. „Salinity“. In Lake Kinneret, 113–31. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8944-8_8.
Der volle Inhalt der QuelleJain, C. K. „Salinity“. In Encyclopedia of Earth Sciences Series, 959. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_461.
Der volle Inhalt der QuelleRavikumar, V. „Salinity“. In Sprinkler and Drip Irrigation, 589–96. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2775-1_22.
Der volle Inhalt der QuelleDavenport, John. „Salinity“. In Environmental Stress and Behavioural Adaptation, 46–67. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-6073-5_3.
Der volle Inhalt der QuelleWilley, Neil. „Salinity“. In Environmental Plant Physiology, 201–25. New York, NY : Garland Science, 2016.: Garland Science, 2018. http://dx.doi.org/10.1201/9781317206231-9.
Der volle Inhalt der QuelleKeddy, Paul A. „Salinity“. In Causal Factors for Wetland Management and Restoration: A Concise Guide, 113–21. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21788-3_10.
Der volle Inhalt der QuelleTilbrook, Joanne, und Stuart Roy. „Salinity tolerance“. In Plant Abiotic Stress, 133–78. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118764374.ch6.
Der volle Inhalt der QuelleCapareda, Sergio C. „Salinity Gradient“. In Introduction to Renewable Energy Conversions, 189–210. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429199103-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Salinity"
Harper, Matthew, Ivy Liu, Bing Xue, Ross Vennell und Mengjie Zhang. „Evaluating Machine Learning Techniques for Predicting Salinity“. In 2024 IEEE Congress on Evolutionary Computation (CEC), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/cec60901.2024.10612099.
Der volle Inhalt der Quelle„Salinity Management“. In Irrigation Systems Management. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2021. http://dx.doi.org/10.13031/ism.2021.7.
Der volle Inhalt der QuelleAugusciuk, Elzbieta, Andrzej W. Domanski, Marcin Roszko und Marcin Swillo. „Fiber optic salinity sensor: temperature influence on salinity measurement“. In Optical Fibers and Their Applications VI, herausgegeben von Jan Dorosz und Ryszard S. Romaniuk. SPIE, 1999. http://dx.doi.org/10.1117/12.348709.
Der volle Inhalt der QuelleHamidović, Medina, Stefan Angerbauer, Andreas Springer und Werner Haselmayr. „Salinity and Droplets“. In NANOCOM '23: The 10th Annual ACM International Conference on Nanoscale Computing and Communication. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3576781.3608727.
Der volle Inhalt der QuelleKhanamiri, Hamid Hosseinzade, Ole Torsæter und Jan Åge Stensen. „Experimental Study of Low Salinity and Optimal Salinity Surfactant Injection“. In EUROPEC 2015. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/174367-ms.
Der volle Inhalt der QuelleJerauld, Gary Russell, Kevin John Webb, Cheng-Yuan Lin und James Seccombe. „Modeling Low-Salinity Waterflooding“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/102239-ms.
Der volle Inhalt der QuelleSkauge, A., und B. S. Shiran. „Low Salinity Polymer Flooding“. In IOR 2013 - 17th European Symposium on Improved Oil Recovery. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20142603.
Der volle Inhalt der QuelleLe Vine, David, Hsun-Ying Kao, Gary Lagerloef, Liang Hong, Emmanuel Dinnat, Thomas Meissner, Frank Wentz und Tong Lee. „Status of Aquarius Salinity“. In 2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad). IEEE, 2018. http://dx.doi.org/10.1109/microrad.2018.8430709.
Der volle Inhalt der QuelleDiaz-Herrera, N., O. Esteban, M. C. Navarrete und A. Gonzalez-Cano. „Fiber optic salinity probe“. In Second European Workshop on Optical Fibre Sensors. SPIE, 2004. http://dx.doi.org/10.1117/12.566710.
Der volle Inhalt der QuelleFrenkel, Val. „Membranes to Manage Salinity“. In World Environmental and Water Resources Congress 2007. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)452.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Salinity"
Wentz, Frank. Aquarius Salinity Retrieval Algorithm. Remote Sensing Systems, August 2011. http://dx.doi.org/10.56236/rss-aq.
Der volle Inhalt der QuelleParchure, T. M., Steven C. Wilhelms, Soraya Sarruff und William H. McAnally. Salinity Intrusion in the Panama Canal. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada378475.
Der volle Inhalt der QuelleHasegawa, Paul Michael, Leonora Reinhold, F. D. Hess und Zvi H. R. Lerner. Membrane Transport Adaptations Contributing to Salinity. United States Department of Agriculture, Dezember 1986. http://dx.doi.org/10.32747/1986.7566754.bard.
Der volle Inhalt der QuellePolzin, Kurt L., und Raffaele Ferrari. Finescale Structure of the Temperature-Salinity Relationship. Fort Belvoir, VA: Defense Technical Information Center, Juni 2005. http://dx.doi.org/10.21236/ada436440.
Der volle Inhalt der QuelleHunter, J. A., P. J. Kurfurst und S. M. Birk. Water - Column Temperature, Salinity and Conductivity Measurements. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132224.
Der volle Inhalt der QuelleFerrari, Raffaele, und Kurt L. Polzin. Finescale Structure of the Temperature-Salinity Relationship. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada618710.
Der volle Inhalt der QuelleMeissner, Thomas. RSS SMAP Salinity: Version 2 Validated Release. Remote Sensing Systems, September 2016. http://dx.doi.org/10.56236/rss-bd.
Der volle Inhalt der QuelleCramer, Grant R., und Nirit Bernstein. Mechanisms for Control of Leaf Growth during Salinity Stress. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7570555.bard.
Der volle Inhalt der QuelleNoll, L., B. Gall, M. Crocker und D. Olsen. Surfactant loss: Effects of temperature, salinity, and wettability. Office of Scientific and Technical Information (OSTI), Mai 1989. http://dx.doi.org/10.2172/6272744.
Der volle Inhalt der QuelleMeissner, Thomas. Aquarius Salinity Retrieval Algorithm End of Mission ATBD. Remote Sensing Systems, Dezember 2017. http://dx.doi.org/10.56236/rss-be.
Der volle Inhalt der Quelle