Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Safe corridors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Safe corridors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Safe corridors"
Zemotel, Linda M., und David K. Montebello. „Interregional Corridors: Prioritizing and Managing Critical Connections Between Minnesota’s Economic Centers“. Transportation Research Record: Journal of the Transportation Research Board 1817, Nr. 1 (Januar 2002): 79–87. http://dx.doi.org/10.3141/1817-10.
Der volle Inhalt der QuelleEspadas, Irene, Thomas W. Maddox und Felipe de Vicente. „Optimal safe implantation corridors in feline cervical vertebrae (C2–T1): CT study in 16 domestic shorthair cats“. Journal of Feline Medicine and Surgery 20, Nr. 12 (19.02.2018): 1149–57. http://dx.doi.org/10.1177/1098612x18757592.
Der volle Inhalt der QuelleMa, Zhaowei, Zhongming Wang, Aitong Ma, Yunzhuo Liu und Yifeng Niu. „A Low-Altitude Obstacle Avoidance Method for UAVs Based on Polyhedral Flight Corridor“. Drones 7, Nr. 9 (19.09.2023): 588. http://dx.doi.org/10.3390/drones7090588.
Der volle Inhalt der QuelleHarper, Tisha, Stephen Joslyn, Julia Whittington, Devon Hague, Mark Mitchell, David Schaeffer und Clara Moran. „Computed tomographic study of safe implantation corridors in rabbit lumbar vertebrae“. Veterinary and Comparative Orthopaedics and Traumatology 30, Nr. 05 (2017): 357–63. http://dx.doi.org/10.3415/vcot-17-01-0009.
Der volle Inhalt der QuellePrause, Gunnar. „A Green Corridor Balanced Scorecard“. Transport and Telecommunication Journal 15, Nr. 4 (19.12.2014): 299–307. http://dx.doi.org/10.2478/ttj-2014-0026.
Der volle Inhalt der QuelleRanjbar, Mansour, Ali Tavakoli Kashani, Mohammad Mehdi Besharati, Moslem Azizi Bondarabadi, Hormoz Zakeri, Seyedali Hosseinizadeh, Gregory Chambers, Lori Mooren und Ray Shuey. „Adopting a Safe System Approach to Determine Safer Speed Limits: A Case Study from Iran“. Journal of Road Safety 33, Nr. 1 (09.02.2022): 26–34. http://dx.doi.org/10.33492/jrs-d-21-00045.
Der volle Inhalt der QuelleNguyen, Thai Binh, Manzur Murshed, Tanveer Choudhury, Kathleen Keogh, Gayan Kahandawa Appuhamillage und Linh Nguyen. „A Depth-Based Hybrid Approach for Safe Flight Corridor Generation in Memoryless Planning“. Sensors 23, Nr. 16 (16.08.2023): 7206. http://dx.doi.org/10.3390/s23167206.
Der volle Inhalt der QuelleWicaksono, Agung Wahyu, Imam Sonhaji und Darmawanta Sembiring. „Penerbangan dan Wisata: Travel Bubble dan Koridor Transportasi di Masa Pandemi“. Jurnal Manajemen Transportasi & Logistik (JMTRANSLOG) 9, Nr. 2 (23.03.2023): 101. http://dx.doi.org/10.54324/j.mtl.v9i2.570.
Der volle Inhalt der QuelleEby, Adam, Peter Early, Simon Roe, Karl Kraus, Yuan Lingnan und Jonathan Mochel. „Computed Tomographic Evaluation of Mid-thoracic Vertebral Corridors in Normal French Bulldogs“. European Journal of Veterinary Medicine 2, Nr. 1 (01.02.2022): 1–3. http://dx.doi.org/10.24018/ejvetmed.2022.2.1.21.
Der volle Inhalt der QuelleVignesh, R., M. Javed, SubbaChandra Balaji, C. Premanand, SyedAshfaque Zakki und C. Rex. „Safe corridors for K-wiring in phalangeal fractures“. Indian Journal of Orthopaedics 49, Nr. 4 (2015): 388. http://dx.doi.org/10.4103/0019-5413.159591.
Der volle Inhalt der QuelleDissertationen zum Thema "Safe corridors"
Toumieh, Charbel. „Single and multi-agent motion planning for multirotors at high speeds“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG072.
Der volle Inhalt der QuelleAutonomous navigation of aerial drones has many real-world applications that can make some tasks faster and more efficient, such as search and rescue. The main approach is to divide the problem of autonomous navigation into subproblems and try to solve them optimally. These subproblems are usually considered to be perception (localization and mapping), planning and control. In this work, we address some of these subproblems that are bottlenecks of fast and agile flight of autonomous drone navigation. We focus on making our algorithms suitable for low compute embedded systems. Our work can be divided into 4 parts. The first part presents a new offline planning algorithm in a mapped and static environment that beats all state-of-the-art methods in terms of time optimal trajectory generation for quadrotors. The second part addresses mapping and studies the limits of using a GPU to transform the pointcloud output of sensors into a voxel grid. The focus is on generating the voxel grid in the lowest computation time possible to make it suitable for low compute embedded systems. The third part (using voxel grids) tackles the problem of generating Safe Corridors that are used in state-of-the-art planning methods to plan safe and feasible trajectories. In our work on Safe Corridors we improve on the state-of-the-art in terms of safety, while remaining within the hard constraints of low compute systems. The fourth and final part uses our work on Safe Corridors and presents a new planning framework to improve on the state-of-the-art of multirotor planning in a static/dynamic environment for single/multi-agent planning
Hellemeier, Clemens. „From Stockholm To Hamburg: Do the Actors involved have the same Corridor in Mind?“ Thesis, Stockholms universitet, Kulturgeografiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-72458.
Der volle Inhalt der QuelleMarembo, Kudzanai Rosebud. „Identifying african wild dog (Lycaon pictus) corridors outside Gonarezhou National Park and Save Valley Conservancy using maxent species distribution modeling“. Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96893.
Der volle Inhalt der QuelleENGLISH ABSTRACT:The African wild dog (Lycaon pictus) is one of the most endangered large carnivores. Gonarezhou National Park (GNP) and Savè Valley Conservancy (SVC) that hold part of the few remaining viable populations report that wild dog populations continue to decline due to high rates of habitat loss and fragmentation. This leads to low pup survival rates due to predators and reduced formation of new packs as the wild dogs have become reluctant to leave the safety of their original packs in pursuit of mating partners in fragmented habitats where higher risks of danger exist. Consequently, this reduces population growth for Lycaon pictus. Therefore, the study sought to identify additional suitable habitat for wild dog outside GNP and SVC and a corridor connecting the two areas using the ecological niche theory. Wild dog satellite collar data from the African Wildlife Conservation Fund (AWCF) was used with spatial and climate data for GNP and SVC from PeaceParks and WorldClim. This data was used to firstly, identify dens using ArcGIS 10.1. Secondly, map geographic and temporal distributions using Time Local Convex Hull (T-LoCoH). Thirdly, to assess biotic and abiotic drivers of different packs and sexes movement and distribution patterns using ARCGIS 10.1 and lastly, map probability distributions (corridor and re-location sites) using Maximum Entropy (MaxEnt). Den locations are in areas away from predators and human settlements. Wild dog geographic distributions are smaller in the cold and dry seasons and differ according to sex whilst temporal distributions depend on their use of resources. The most influential biotic and abiotic variables within reserves were distance to human settlements and elevation whilst the least influential were roads and temperature. However, outside the reserves, the most influential variable was distance from reserve. Malilangwe is a potential corridor between GNP and SVC, whilst Masvingo, Beitbridge, and Mwenezi districts have suitable habitat for re-location sites.
AFRIKAANSE OPSOMMING: Die Afrika-wildehond (Lycaon pictus) is een van die mees bedreigde groot karnivore. Gonarezhou Nationale Park (GNP) en Savè Vallei Conservancy (SVC) wat deel van die min oorblywende lewensvatbare bevolkings hou rapporteer dat wilde hond bevolkings voortgaan om te daal as gevolg van die verlies en fragmentering van habitat. Dit lei tot 'n lae pup oorlewingsyfer te danke aan predasie asook dalende vlakke van nuwe troppe. Omdat as die wilde honde het huiwerig geword om die veiligheid van hul oorspronklike troppe te verlaat in die soektog na paarmaats in gefragmenteerde habitatte waar hoër risiko van gevaar bestaan. Gevolglik verminder die bevolkingsgroei vir Lycaon pictus. Daarom onderneem die studie addisionele geskikte habitat vir wilde hond buite die GNP en SVC te vind en die stigting van 'n gang Om die twee gebiede te verbind met behulp van die ekologiese nis teorie te identifiseer. Wildehond satelliet kraag data van die African Wildlife Conservation Fund (AWCF) is gebruik met ruimtelike en klimaat data vir die GNP en SVC van PeaceParks en WorldClim. Hierdie data is gebruik om eerstens, kuile te identifiseer met behulp van ArcGIS 10.1. Tweedens, kartering van geografiese en temporale verspreiding met behulp van Time Local Convex Hull (T-LoCoH). Derdens, die ondersoek van biotiese en abioties dryfkragte van verskillende troppe pakke en geslagte bewegings en verspreidingspatrone met ArcGIS 10.1 te evalueer en laastens, kartering van waarskynlikheidsverdelings (korridor en hervestigingsgebiede) van die Maksimum Entropie (MaxEnt). Kuile is in gebiede weg van roofdiere en menslike nedersettings. Wildehond geografiese verspreiding is kleiner in die koue en droë seisoene en verskil volgens geslag, terwyl temporale verspreidings afhang van die gebruik van hulpbronne. Die mees invloedryke biotiese en abioties veranderlikes binne reserwes was die afstand vanaf menslike nedersettings en hoogte, terwyl paaie en temperatuur die laagste invloed gehad. Buite die reserwes was, die mees invloedryke veranderlike afstand vanaf reservaat. Malilangwe is 'n potensiële korridor tussen die GNP en SVC, terwyl Masvingo, Beitbridge en Mwenezi distrikte geskikte habitat bied vir hervestiging.
Papaeracleous, Iraklis. „Revising urban mobilities : Transformation of Essingeleden motorway into a safer, more walkable and transit-friendlier mobility corridor“. Thesis, KTH, Arkitektur, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254561.
Der volle Inhalt der QuelleBücher zum Thema "Safe corridors"
Toronto Area Rail Transportation of Dangerous Goods Task Force (Canada), Hrsg. Seeking a safe corridor: Protecting Toronto's future. Toronto: M-TRAC, 1986.
Den vollen Inhalt der Quelle findenShowalter, Dave. Sage Spirit: Landscape and Livelihood in the American West. Mountaineers Books, The, 2015.
Den vollen Inhalt der Quelle findenGurgenidze, Davit, und Givi Gavardashvili. Fundamentals of The Ecological-Economic Theory of Integrated Natural Resource Management. Georgian Technical University, 2022. http://dx.doi.org/10.36073/978-9941-28-869-2.
Der volle Inhalt der QuelleAgarwal, Vijay, Hrsg. Integrated Management of Complex Intracranial Lesions. Cambridge University Press, 2021. http://dx.doi.org/10.1017/9781108908610.
Der volle Inhalt der QuelleZola, Émile. His Excellency Eugène Rougon. Herausgegeben von Brian Nelson. Oxford University Press, 2018. http://dx.doi.org/10.1093/owc/9780198748250.001.0001.
Der volle Inhalt der QuelleSmiley, Will. Prisoners of War. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198785415.003.0006.
Der volle Inhalt der QuelleBuchteile zum Thema "Safe corridors"
Huh, Jinwook, Ömür Arslan und Daniel D. Lee. „Probabilistically Safe Corridors to Guide Sampling-Based Motion Planning“. In Springer Proceedings in Advanced Robotics, 311–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95459-8_19.
Der volle Inhalt der QuelleSláma, Jakub, Petr Váňa und Jan Faigl. „GNG-based Clustering of Risk-aware Trajectories into Safe Corridors“. In Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, 87–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15444-7_9.
Der volle Inhalt der QuelleLin, Haichao. „Design of Multi-robot Path Planning Based on Safe Corridors“. In Lecture Notes in Electrical Engineering, 409–19. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2757-5_43.
Der volle Inhalt der QuelleRajan, S. Irudaya, und Ashwin Kumar. „Migration, Development Within the SAARC Framework: Towards a Migration Governance Model of the Future“. In IMISCOE Research Series, 215–26. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34194-6_15.
Der volle Inhalt der QuelleJansman, Hugh A. H. „Animal Conservation in the Twenty-First Century“. In The International Library of Environmental, Agricultural and Food Ethics, 27–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63523-7_2.
Der volle Inhalt der QuelleJiang, Man, Fedor Baart, Klaas Visser, Robert Hekkenberg und Mark Van Koningsveld. „Corridor Scale Planning of Bunker Infrastructure for Zero-Emission Energy Sources in Inland Waterway Transport“. In Lecture Notes in Civil Engineering, 334–45. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_30.
Der volle Inhalt der QuelleFeyissa, Dereje, Meron Zeleke und Fana Gebresenbet. „Migration as a Collective Project in the Global South: A Case Study from the Ethiopia–South Africa Corridor“. In The Palgrave Handbook of South–South Migration and Inequality, 201–21. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-39814-8_10.
Der volle Inhalt der QuelleYan, Xiujun, Zhonghua Li und Lin Chen. „Prototype Monitoring of Cavitation in Valve Culvert of Qianwei Shiplock“. In Lecture Notes in Civil Engineering, 553–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_48.
Der volle Inhalt der QuelleScholz, Luca. „Boundaries“. In Borders and Freedom of Movement in the Holy Roman Empire, 87–127. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198845676.003.0004.
Der volle Inhalt der Quelle„Open Doors in the Corridors of Power“. In For God’s Sake. Zed Books Ltd, 2008. http://dx.doi.org/10.5040/9781350220195.ch-001.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Safe corridors"
Slama, Jakub, Petr Vana und Jan Faigl. „Generating Safe Corridors Roadmap for Urban Air Mobility“. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022. http://dx.doi.org/10.1109/iros47612.2022.9981326.
Der volle Inhalt der QuelleLiu, Honghui, Xiaomei Xie und Mingzhu Wei. „An Automated Parking Trajectory Planning Method Based on Safe Parking Corridors“. In 2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI). IEEE, 2023. http://dx.doi.org/10.1109/cvci59596.2023.10397154.
Der volle Inhalt der QuelleHua, Zhengyang. „Constructing Safe Flight Corridors for Quadrotor Navigation in Cluttered 3-D Environments“. In 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA). IEEE, 2023. http://dx.doi.org/10.1109/icpeca56706.2023.10076054.
Der volle Inhalt der QuelleDaniel Raj, J. Joshua, C. N. Sangeetha, Sarthak Ghorai, Subhajit Das, Manish und Shariq Ahmed. „Wild Animals Intrusion Detection for Safe Commuting in Forest Corridors using AI Techniques“. In 2023 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM). IEEE, 2023. http://dx.doi.org/10.1109/iciptm57143.2023.10117831.
Der volle Inhalt der QuelleZarembski, Allan M., James Blaze und Pradeep Patel. „Shared Corridors, Shared Interests“. In 2011 Joint Rail Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/jrc2011-56095.
Der volle Inhalt der QuelleLi, Bai, Tankut Acarman, Xiaoyan Peng, Youmin Zhang, Xuepeng Bian und Qi Kong. „Maneuver Planning for Automatic Parking with Safe Travel Corridors: A Numerical Optimal Control Approach“. In 2020 European Control Conference (ECC). IEEE, 2020. http://dx.doi.org/10.23919/ecc51009.2020.9143786.
Der volle Inhalt der QuelleCen, Hangjie, Bai Li, Tankut Acarman, Youmin Zhang, Yakun Ouyang und Yiqun Dong. „Optimization-based Maneuver Planning for a Tractor-Trailer Vehicle in Complex Environments using Safe Travel Corridors“. In 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2021. http://dx.doi.org/10.1109/iv48863.2021.9575439.
Der volle Inhalt der QuelleDOMLESKY, ANYA. „Infrastructure Corridors: Leveraging Linear Systems for Public Life“. In 2021 AIA/ACSA Intersections Research Conference. ACSA Press, 2021. http://dx.doi.org/10.35483/acsa.aia.inter.21.33.
Der volle Inhalt der QuelleTutumluer, Erol, Timothy D. Stark, Debakanta Mishra und James P. Hyslip. „Investigation and Mitigation of Differential Movement at Railway Transitions for US High Speed Passenger Rail and Joint Passenger/Freight Corridors“. In 2012 Joint Rail Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/jrc2012-74074.
Der volle Inhalt der QuelleČudina Ivančev, Ana, und Vesna Dragčević. „The influence of autonomous vehicles on the selection of highway design elements“. In 8th Symposium on Doctoral Studies in Civil Engineering. University of Zagreb Faculty of Civil Engineering, 2022. http://dx.doi.org/10.5592/co/phdsym.2022.19.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Safe corridors"
Santhya, K. G., A. J. Francis Zavier, Shilpi Rampal und Avishek Hazra. Promoting safe overseas labour migration: Lessons from ASK’s safe migration project in India. Population Council, 2022. http://dx.doi.org/10.31899/sbsr2022.1038.
Der volle Inhalt der QuelleSmith, Jijo K., Howell Li und Darcy M. Bullock. Populating SAE J2735 Message Confidence Values for Traffic Signal Transitions Along a Signalized Corridor. Purdue University, 2019. http://dx.doi.org/10.5703/1288284317322.
Der volle Inhalt der QuelleHuijser, Marcel, und S. C. Getty. Modified jump-outs for white-tailed deer and mule deer. Nevada Department of Transportation, September 2022. http://dx.doi.org/10.15788/ndot2018.2022.
Der volle Inhalt der QuelleKerr, D. E. Reconnaissance surficial geology, Nose Lake, Nunavut-Northwest Territories, NTS 76-F. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329666.
Der volle Inhalt der QuelleKhalil, James, MaryAnne Iwara und Martine Zeuthen. Journeys through Extremism: The Experiences of Forced Recruits in Boko Haram. RESOLVE Network, September 2022. http://dx.doi.org/10.37805/cbags2022.2.
Der volle Inhalt der QuelleHuijser, M. P., und S. C. Getty. Electrified Barriers Installed on Top of Wildlife Guards to Help Keep Large Wild Mammals Out of a Fenced Road Corridor. Western Transportation Institute, Dezember 2023. http://dx.doi.org/10.15788/1702675805.
Der volle Inhalt der QuelleDown, Murray. PR686-203903-R02 Ongoing InSAR Geohazard Monitoring of Pipeline Right-of Ways in the Appalachian Mountains. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2021. http://dx.doi.org/10.55274/r0012178.
Der volle Inhalt der QuelleNiles, John S., und J. M. Pogodzinski. Steps to Supplement Park-and-Ride Public Transit Access with Ride-and-Ride Shuttles. Mineta Transportation Institute, Juli 2021. http://dx.doi.org/10.31979/mti.2021.1950.
Der volle Inhalt der QuelleKwon, Jaymin, Yushin Ahn und Steve Chung. Spatio-Temporal Analysis of the Roadside Transportation Related Air Quality (STARTRAQ) and Neighborhood Characterization. Mineta Transportation Institute, August 2021. http://dx.doi.org/10.31979/mti.2021.2010.
Der volle Inhalt der QuelleRoad Asset Management Systems and Performance-Based Road Maintenance Contracts in the CAREC Region. Asian Development Bank, Dezember 2021. http://dx.doi.org/10.22617/spr210451-2.
Der volle Inhalt der Quelle