Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rule commutation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rule commutation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rule commutation"
Evans, D. Gwion, John E. Gough und Matthew R. James. „Non-abelian Weyl commutation relations and the series product of quantum stochastic evolutions“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, Nr. 1979 (28.11.2012): 5437–51. http://dx.doi.org/10.1098/rsta.2011.0525.
Der volle Inhalt der QuelleBulathsinghala, D. L., und K. A. I. L. Wijewardena Gamalath. „Implementation of a Quantized Line Element in Klein-Gordon and Dirac Fields“. International Letters of Chemistry, Physics and Astronomy 48 (März 2015): 68–86. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.48.68.
Der volle Inhalt der QuelleBulathsinghala, D. L., und K. A. I. L. Wijewardena Gamalath. „Implementation of a Quantized Line Element in Klein-Gordon and Dirac Fields“. International Letters of Chemistry, Physics and Astronomy 48 (25.03.2015): 68–86. http://dx.doi.org/10.56431/p-36k0sm.
Der volle Inhalt der QuelleNarendran, Paliath, und Friedrich Otto. „Preperfectness is undecidable for thue systems containing only length-reducing rules and a single commutation rule“. Information Processing Letters 29, Nr. 3 (Oktober 1988): 125–30. http://dx.doi.org/10.1016/0020-0190(88)90049-x.
Der volle Inhalt der QuelleChin, Hee-Kwon. „The Study of the Commutation Principles (of General rule) in T’ang Code“. Journal of Social Thoughts and Culture 21, Nr. 4 (30.12.2018): 143–71. http://dx.doi.org/10.17207/jstc.2018.12.21.4.5.
Der volle Inhalt der QuelleSavasta, Salvatore, Omar Di Stefano und Franco Nori. „Thomas–Reiche–Kuhn (TRK) sum rule for interacting photons“. Nanophotonics 10, Nr. 1 (18.11.2020): 465–76. http://dx.doi.org/10.1515/nanoph-2020-0433.
Der volle Inhalt der QuelleSkála, Lubomír, und Vojtěch Kapsa. „Quantum Mechanics Needs No Interpretation“. Collection of Czechoslovak Chemical Communications 70, Nr. 5 (2005): 621–37. http://dx.doi.org/10.1135/cccc20050621.
Der volle Inhalt der QuelleChin, Hee-Kwon. „The Study of the Commutation Principles (of General rule) in T��ang Code“. Journal of Social Thoughts and Culture 21, Nr. 04 (30.12.2018): 143–71. http://dx.doi.org/10.17207/jstc.2018.12.21.4.143.
Der volle Inhalt der QuelleSOW, C. L., und T. T. TRUONG. „QUANTUM GROUP APPROACH TO A SOLUBLE VERTEX MODEL WITH GENERALIZED ICE RULE“. International Journal of Modern Physics A 11, Nr. 10 (20.04.1996): 1747–61. http://dx.doi.org/10.1142/s0217751x96000936.
Der volle Inhalt der QuelleDerzhko, O. V., und A. Ph. Moina. „Bose commutation rule approximation in the theory of spin systems and elementary excitation spectrum“. physica status solidi (b) 196, Nr. 1 (01.07.1996): 237–41. http://dx.doi.org/10.1002/pssb.2221960123.
Der volle Inhalt der QuelleDissertationen zum Thema "Rule commutation"
Di, Guardia Rémi. „Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear Logic“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0050.
Der volle Inhalt der QuelleThis study is concerned with the equality of proofs and formulas in linear logic, with in particular contributions for the multiplicative-additive fragment of this logic. In linear logic, and as in many other logics (such as intuitionistic logic), there are two transformations on proofs: cut-elimination and axiom-expansion. One often wishes to identify two proofs related by these transformations, as it is the case semantically (in a categorical model for instance). This situation is similar to the one in the λ-calculus where terms are identified up to β-reduction and η-expansion, operations that, through the prism of the Curry-Howard correspondence, are related respectively to cut-elimination and axiom-expansion. We show here that this identification corresponds exactly to identifying proofs up to rule commutation, a third well-known operation on proofs which is easier to manipulate. We prove so only in multiplicative-additive linear logic, even if we conjecture such a result holds in full linear logic.Not only proofs but also formulas can be identified up to cut-elimination and axiom-expansion. Two formulas are isomorphic if there are proofs between them whose compositions yield identities, still up to cut-elimination and axiom-expansion. These formulas are then really considered to be the same, and every use of one can be replaced with one use of the other. We give an equational theory characterizing exactly isomorphic formulas in multiplicative-additive linear logic. A generalization of an isomorphism is a retraction, which intuitively corresponds to a couple of formulas where the first can be replaced by the second -- but not necessarily the other way around, contrary to an isomorphism. Studying retractions is more complicated, and we characterize retractions to an atom in the multiplicative fragment of linear logic.When studying the two previous problems, the usual syntax of proofs from sequent calculus seems ill-suited because we consider proofs up to rule commutation. Part of linear logic can be expressed in a better adapted syntax in this case: proof-nets, which are graphs representing proofs quotiented by rule commutation. This syntax was an instrumental tool for the characterization of isomorphisms and retractions. Unfortunately, proof-nets are not (or badly) defined with units. Concerning our issues, this restriction leads to a study of the unit-free case by means of proof-nets with the crux of the demonstration, preceded by a work in sequent calculus to handle the units. Besides, this thesis also develops part of the theory of proof-nets by providing a simple proof of the sequentialization theorem, which relates the two syntaxes of proof-net and sequent calculus, substantiating that they describe the same underlying objects. This new demonstration is obtained as a corollary of a generalization of Yeo's theorem. This last result is fully expressed in the theory of edge-colored graphs, and allows to recover proofs of sequentialization for various definitions of proof-nets. Finally, we also formalized proof-nets for the multiplicative fragment of linear logic in the proof assistant Coq, with notably an implementation of our new sequentialization proof
Bücher zum Thema "Rule commutation"
Horing, Norman J. Morgenstern. Thermodynamic Green’s Functions and Spectral Structure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0007.
Der volle Inhalt der QuelleBuchteile zum Thema "Rule commutation"
Adelman, Steven A. „Commutation Rules and Uncertainty Relations“. In Basic Molecular Quantum Mechanics, 91–97. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155741-5.
Der volle Inhalt der QuelleIzumi, Masaki. „Fusion Rules and Classification of Subfactors“. In Quantum and Non-Commutative Analysis, 317–20. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2823-2_24.
Der volle Inhalt der QuelleArtal Bartolo, Enrique, José Ignacio Cogolludo-Agustín und Jorge Martín-Morales. „Coverings of Rational Ruled Normal Surfaces“. In Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 343–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96827-8_13.
Der volle Inhalt der QuelleBlaisdell, Eben, Max Kanovich, Stepan L. Kuznetsov, Elaine Pimentel und Andre Scedrov. „Non-associative, Non-commutative Multi-modal Linear Logic“. In Automated Reasoning, 449–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10769-6_27.
Der volle Inhalt der QuelleFarjoun, Emmanuel Dror. „Commutation rules for Ω, Lf and CWA, preservation of fibrations and cofibrations“. In Cellular Spaces, Null Spaces and Homotopy Localization, 59–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094432.
Der volle Inhalt der QuelleDuncan, Anthony, und Michel Janssen. „The Consolidation of Matrix Mechanics: Born–Jordan, Dirac and the Three-Man-Paper“. In Constructing Quantum Mechanics Volume Two, 255–348. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198883906.003.0005.
Der volle Inhalt der QuelleEvens, Leonard. „Products in cohomology“. In The Cohomology of Groups, 21–34. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198535805.003.0003.
Der volle Inhalt der Quelle„Commutation of CA Rules“. In World Scientific Series on Nonlinear Science Series A, 67–86. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812798671_0005.
Der volle Inhalt der QuelleLambek, Joachim. „From Categorial Grammar to Bilinear Logic“. In Substructural Logics, 207–38. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780198537779.003.0008.
Der volle Inhalt der QuelleIliopoulos, J., und T. N. Tomaras. „From Classical to Quantum Fields. Free Fields“. In Elementary Particle Physics, 220–36. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844200.003.0010.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Rule commutation"
Itoko, Toshinari, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo und Andrew W. Cross. „Quantum circuit compilers using gate commutation rules“. In ASPDAC '19: 24th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3287624.3287701.
Der volle Inhalt der QuelleEckstein, Eugene C., Vinay Bhal, JoDe M. Lavine, Baoshun Ma, Mark Leggas und Jerome A. Goldstein. „Nested First-Passages of Tracer Particles in Flows of Blood and Control Suspensions: Symmetry and Lorentzian Transformations“. In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69549.
Der volle Inhalt der Quelle