Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rotor/stator simulations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rotor/stator simulations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rotor/stator simulations"
Tang, Jing, Jie Chen, Kan Dong, Yongheng Yang, Haichen Lv und Zhigang Liu. „Modeling and Evaluation of Stator and Rotor Faults for Induction Motors“. Energies 13, Nr. 1 (26.12.2019): 133. http://dx.doi.org/10.3390/en13010133.
Der volle Inhalt der QuelleReinmo¨ller, U., B. Stephan, S. Schmidt und R. Niehuis. „Clocking Effects in a 1.5 Stage Axial Turbine—Steady and Unsteady Experimental Investigations Supported by Numerical Simulations“. Journal of Turbomachinery 124, Nr. 1 (01.02.2001): 52–60. http://dx.doi.org/10.1115/1.1425811.
Der volle Inhalt der QuelleKaranayil, Baburaj, Muhammed Fazlur Rahman und Colin Grantham. „Identification of Induction Motor Parameters in Industrial Drives with Artificial Neural Networks“. Advances in Fuzzy Systems 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/241809.
Der volle Inhalt der QuelleXu, Jieqiong, Qunhong Li und Shimin Wang. „Impulsive Control of the Rotor-Stator Rub Based on Phase Characteristic“. Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/495747.
Der volle Inhalt der QuelleWang, Ziwei, Xiong Jiang, Ti Chen, Yan Hao und Min Qiu. „Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method“. Modern Physics Letters B 32, Nr. 12n13 (10.05.2018): 1840021. http://dx.doi.org/10.1142/s0217984918400213.
Der volle Inhalt der QuelleAkwa, J. V., und A. P. Petry. „STATORS USE INFLUENCE ON THE PERFORMANCE OF A SAVONIUS WIND ROTOR USING COMPUTATIONAL FLUID DYNAMICS“. Revista de Engenharia Térmica 10, Nr. 1-2 (31.12.2011): 63. http://dx.doi.org/10.5380/reterm.v10i1-2.61965.
Der volle Inhalt der QuelleRai, M. M., und N. K. Madavan. „Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor–Stator Interaction“. Journal of Turbomachinery 112, Nr. 3 (01.07.1990): 377–84. http://dx.doi.org/10.1115/1.2927670.
Der volle Inhalt der QuelleBrandão, André, Aline Souza de Paula, Marcelo Amorim Savi und Fabrice Thouverez. „Nonlinear Dynamics and Chaos of a Nonsmooth Rotor-Stator System“. Mathematical Problems in Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/8478951.
Der volle Inhalt der QuelleGaetani, Paolo, und Giacomo Persico. „Influence of the Rotor-Driven Perturbation on the Stator-Exit Flow within a High-Pressure Gas Turbine Stage“. International Journal of Turbomachinery, Propulsion and Power 6, Nr. 3 (13.07.2021): 28. http://dx.doi.org/10.3390/ijtpp6030028.
Der volle Inhalt der QuelleAhriche, Aimad. „An Approach of Position and Torque Estimation for Induction Motor based Sensor-less Drive“. International Journal of Circuits, Systems and Signal Processing 17 (06.03.2023): 44–49. http://dx.doi.org/10.46300/9106.2023.17.5.
Der volle Inhalt der QuelleDissertationen zum Thema "Rotor/stator simulations"
JACQUES, REMI. „Simulations numeriques d'ecoulements transitionnels et turbulents dans des configurations de type rotor-stator“. Paris 11, 1997. http://www.theses.fr/1997PA112386.
Der volle Inhalt der QuelleD'Haudt, Emmanuel. „Étude expérimentale de l'influence des conditions périphériques sur un écoulement turbulent de type rotor-stator : premières confrontations avec des résultats de simulations numériques“. Lille 1, 2006. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2006/50376-2006-D_Haudt.pdf.
Der volle Inhalt der QuelleD'Haudt, Emmanuel Bois Gérard Debuchy Roger. „Étude expérimentale de l'influence des conditions périphériques sur un écoulement turbulent de type rotor-stator premières confrontations avec des résultats de simulations numériques /“. Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2007. https://iris.univ-lille1.fr/dspace/handle/1908/988.
Der volle Inhalt der QuelleN° d'ordre (Lille 1) :3874. Résumé en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 171-173.
Peres, Noele. „A 3D pseudospectral method for cylindrical coordinates. Application to the simulations of rotating cavity flows“. Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4309/document.
Der volle Inhalt der QuelleWhen simulating flows in cylindrical rotating cavities, a difficulty arises from the singularities appearing on the axis. In the same time, the flow field itself does not have any singularity on the axis and this singularity is only apparent. The present work proposes an efficient and accurate collocation pseudospectral method for solving the 3D Navier-Stokes equations using cylindrical coordinates. This method has been developed in the framework of different studies of rotor-stator flows, using Chebyshev collocation in the radial and axial directions and Fourier-Galerkin approximation in the azimuthal periodic direction [thêta]. To avoid the difficulty on the axis without prescribing any pole and parity conditions usually required, a new approach has been developed. The calculation domain is defined as (r,[thêta];,z)∈[-1,1]×[0,2π]×[-1,1] using an even number N of collocation points in the radial direction. Thus, r=0 is not a collocation point. The method keeps the spectral convergence. The grid-point distribution densifies the mesh only near the boundaries that makes the algorithm well-suited to simulate rotating cavity flows where thin layers develop along the walls. In the azimuthal direction, the overlap in the discretization is avoided by introducing a shift equal to π/2K for [thêta]>π in the Fourier transform. Comparisons with reliable experimental and numerical results of the literature show good quantitative agreements for flows driven by rotating discs in cylindrical cavities. Associated to a Spectral Vanishing Viscosity, the method provides very promising LES results of turbulent cavity flows with or without heat transfer
Sauvage, Bastien. „Approximation et adaptation numériques pour les écoulements en machines tournantes“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5045.
Der volle Inhalt der QuelleThis work is part of a research project aimed at proposing numerical fluid simulations (CFD) capable of capturing the noise produced by rotating machines.The aim of this thesis is to study mesh adaptation methods for unsteady turbulent flows. We begin by describing the tools required for our studies, namely numerical methods, turbulence models and mesh adaptation. The first part is devoted to the study of the "Transient" unsteady mesh adaptation algorithms applied to turbulent flows around cylinders at different Reynolds numbers. A method for taking rotation into account in simulations is then studied, and coupled with mesh the adaptation methods. Numerical examples are proposed.This initial work encounted two major unsolved problems in CFD mesh-adaptation. In order to optimally select the implicit time step, a new space-time mesh adaptation method is presented, which simultaneously adapts the space mesh and the time mesh. In order to adapt the mesh to both mean flow and large turbulent structures, a new mesh adaptation approach is proposed for turbulence in LES and hybrid computation
Jung, Alexander. „Berechnung der Stator-Rotor-Wechselwirkung in Turbomaschinen“. [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8862171.
Der volle Inhalt der QuelleBridel-Bertomeu, Thibault. „Investigation of unsteady phenomena in rotor/stator cavities using Large Eddy Simulation“. Thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/17867/1/BRIDEL_BERTOMEU.pdf.
Der volle Inhalt der QuelleBarbosa, Emerson. „Etude numérique des écoulements tridimensionnels dans des cuves cylindriques rotor-stator“. Phd thesis, Université d'Evry-Val d'Essonne, 2002. http://tel.archives-ouvertes.fr/tel-00354646.
Der volle Inhalt der QuelleBatailly, Alain. „Simulation de l'interaction rotor/stator pour des turbo-machines aéronautiques en configuration non-accidentelle“. Phd thesis, Ecole centrale de nantes - ECN, 2008. http://tel.archives-ouvertes.fr/tel-00364945.
Der volle Inhalt der QuelleQueguineur, Matthieu. „Stability and control of unsteady phenomena in rotor/stator cavities using Large Eddy Simulation“. Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0043.
Der volle Inhalt der QuelleUnsteady phenomena in rotor/stator cavity are well known to be the source of dangerous vibrations in space turbopump. Even though many palliative measures have been taken during their design, experimental campaigns often reveal high flow oscillations that can jeopardize turbomachinery components and even the rocket engine. Today, the origin of such flow instabilities usually called ’pressure band phenomenon’(PBP) is not well understood and difficult to predict numerically. The main goal of this thesis is to investigate such phenomenon mechanism to find technical solutions so as to control it. This problematic is addressed here trough two types of configuration: an academic rotor/stator cavity and a space turbopump cavity. When it comes to cavity flows, their rotating boundary layers are known to be three dimensional and receptive to several instabilities taking the form of spirals or annuli. Reynolds Averaged Navier-Stokes Simulations (RANS)failed to predict such unsteady systems. However, Large Eddy Simulation (LES) proved to be a relevant alternative in many similar applications and is therefore chosen for the present work. Using Power Spectral Analysis (PSD) and Dynamic Mode Decomposition (DMD) on LES predictions, one shows that the PBP is retrieved in an annular smooth rotor/stator cavity and it is composed of three modes driving all the system dynamics. To investigate these mode organization and their possible interactions, a new tool called Dynamic Mode Tracking /Control (DMT/DMTC) is introduced. DMT is constructed so as to extract "on-thefly" flow coherent structures with a given frequency on the basis of LES. Furthermore, augmenting the Navier-Stokes equations with a relaxation term coupled to DMT, DMTC allows to control and follow the evolution of a controlled mode as well as non controlled ones and thereby observe interactions. This strategy after validation is applied to the annular rotating cavity and shows that the low frequency mode is generated by the dominant mode of the system. To go further, Global Linear Stability Analysis (GLSA) augmented with adjoint methods is used to shed some light on all mode origins and points out that the low frequency and dominant modes are coming from the stationary boundary layer. In order to set up control strategies, the GLSA framework is further developed introducing the concept of the sensitivity to base flow modifications which gives the location where the flow should be modified if one wants to stabilize or at least shift a frequency mode. Applied to the academic cavity, one shows that contrary to most studies in the literature, controlling the stator boundary layer is the more efficient way to damp the PBP through suction/injection devices. Finally, gathering all the previous understanding of this flow, the LES framework enables to validate the control strategies proposed and to stabilize the PBP for very low suction amplitudes. To finish, the PBP is analyzed in real space turbompump cavities. In particular, the sensitivity of this specific phenomenon to geometry changes is investigated through two configurations: one without and one with the blades of the stator of the turbopump. Even though the introduction of the blades in the LES creates a more complex flow with the presence of shocks, similar pressure fluctuation spectra are retrieved in both configurations but with azimuthal wavenumber modes that are shifted. Following the studies on the academic cavity, an adapted GLSA to the non-linear dynamics of the turbopump enables to point out that even though the PBP modes are particularly marked in the mainstream of the system, the source of these modes is located in the subcavity in the rotor-stator wheel space. In particular, GLSA results indicate that two possible ways to control the phenomenon are possible: modifying the flow around the seal rim and or modifying the leak around the hub
Bücher zum Thema "Rotor/stator simulations"
Center, Ames Research, Hrsg. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenCenter, Ames Research, Hrsg. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle findenBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. Cleveland, Ohio: Lewis Research Centre, 1990.
Den vollen Inhalt der Quelle findenLewis Research Center. Institute for Computational Mechanics in Propulsion., Hrsg. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle findenBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Den vollen Inhalt der Quelle findenThree-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Rotor/stator simulations"
Neuhauser, Magdalena, Francis Leboeuf, Jean-Christophe Marongiu, Etienne Parkinson und Daniel Robb. „Simulations of Rotor–Stator Interactions with SPH-ALE“. In Advances in Hydroinformatics, 349–61. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-42-0_29.
Der volle Inhalt der QuelleSong, An, Xiang Luo, Zhongliang He und Jian He. „Numerical Investigation on Flow and Heat Transfer of a Rotor–Stator Cavity with Labyrinth Seal“. In Computational and Experimental Simulations in Engineering, 797–814. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42515-8_56.
Der volle Inhalt der QuelleGiangaspero, G., M. Almquist, K. Mattsson und E. van der Weide. „Unsteady Simulations of Rotor Stator Interactions Using SBP-SAT Schemes: Status and Challenges“. In Lecture Notes in Computational Science and Engineering, 247–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19800-2_21.
Der volle Inhalt der QuelleSerre, Eric, Patrick Bontoux und Brian Launder. „Studies of Transitional and Turbulent Flows in Rotor-Stator Cavity Using High-Performance Computations“. In Direct and Large-Eddy Simulation V, 205–12. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2313-2_22.
Der volle Inhalt der QuelleShahangian, Navid, Leila Sharifian, Rüdiger Beykirch, Albert Jeckel, Silja Klier und Lothar Grupe. „Simulation of Oil Flow Behavior in the Air Gap between Rotor and Stator“. In Proceedings, 68–81. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-42940-9_6.
Der volle Inhalt der QuelleWang, Zhiqiang, Huang Yao, Weijun Bao und Dianrong Gao. „Motion Simulation and Statics Analysis of the Stator and Rotor of Low Speed High Torque Water Hydraulic Motor“. In Intelligent Robotics and Applications, 167–80. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22879-2_16.
Der volle Inhalt der QuellePustovetov, Mikhail, Konstantin Shukhmin, Sergey Goolak, Jonas Matijošius und Kateryna Kravchenko. „The Shaft Load Simulations and Calculations of the IM Efficiency Using OrCAD PSpice Designer Software: Obtaining Static Characteristics Data Based on Dynamic Model Modifications of Electrical Machines“. In Induction Motor Computer Models in Three-Phase Stator Reference Frames: A Technical Handbook, 24–35. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815124309123010006.
Der volle Inhalt der QuelleArdaneh, Fatemeh, Marta Zocca, Antti Uusitalo und Teemu Turunen-Saaresti. „Numerical Analysis of Aerodynamics and Performance of a Radial-Inflow Micro-ORC Turbine“. In Proceedings of the 7th International Seminar on ORC Power System (ORC 2023), 363–72. 2024. Aufl. Editorial Universidad de Sevilla, 2024. http://dx.doi.org/10.12795/9788447227457_59.
Der volle Inhalt der QuelleVas, Peter. „Artificial-intelligence-based steady-state and transient analysis of d.c. machines, estimators, control“. In Artificial-Intelligence-Based Electrical Machines and Drives, 278–348. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198593973.003.0009.
Der volle Inhalt der QuelleMorawiec, Marcin. „Robust Mechanism for Speed and Position Observers of Electrical Machines“. In New Trends in Electric Machines - Technology and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107898.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Rotor/stator simulations"
Sato, Masanori, Takashi Nagumo, Kazuyuki Toda und Makoto Yamamoto. „Computation of Rotor/Stator Interaction With Hydrogen-Fuelled Combustion“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45618.
Der volle Inhalt der QuelleRAI, MAN, und NATERI MADAVAN. „Multi-airfoil Navier-Stokes simulations of turbine rotor-stator interaction“. In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-361.
Der volle Inhalt der QuelleZhou, Haowei, Pengcheng Du und Fangfei Ning. „Time step criteria for rotor-stator unsteady simulations of turbomachinery“. In GPPS Chania24. GPPS, 2024. http://dx.doi.org/10.33737/gpps24-tc-065.
Der volle Inhalt der QuelleGraf, Martin B., und Om P. Sharma. „Effects of Downstream Stator Pressure Field on Upstream Rotor Performance“. In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-507.
Der volle Inhalt der QuelleGalpin, Paul, Thorsten Hansen, Georg Scheuerer, Ryan Kelly, Adam Hickman, Aleksandar Jemcov und Scott C. Morris. „Validation of Transonic Axial Compressor Stage Unsteady-State Rotor-Stator Simulations“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64786.
Der volle Inhalt der QuelleDawes, W. N. „A Numerical Study of the Interaction of a Transonic Compressor Rotor Overtip Leakage Vortex With the Following Stator Blade Row“. In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-156.
Der volle Inhalt der QuelleGoldman, Paul, und Agnes Muszynska. „Chaotic Behavior of Rotor/Stator Systems With Rubs“. In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-387.
Der volle Inhalt der QuelleGuérin, Nicolas, Anders Thorin, Fabrice Thouverez, Mathias Legrand und Patricio Almeida. „Thermomechanical Model Reduction for Efficient Simulations of Rotor-Stator Contact Interaction“. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75880.
Der volle Inhalt der QuelleRAI, MAN. „Unsteady three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction“. In 23rd Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-2058.
Der volle Inhalt der QuelleRamakrishna, P. V., und M. Govardhan. „Studies on Downstream Stator With Rotor Re-Staggering and Forward Sweeping in a Subsonic Axial Compressor Stage“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65101.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Rotor/stator simulations"
Chatagny, Laurent. PR-471-16206-R02 Suction Piping Effect on Pump Performance CFD. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), März 2019. http://dx.doi.org/10.55274/r0011562.
Der volle Inhalt der Quelle