Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Rotary regenerator.

Zeitschriftenartikel zum Thema „Rotary regenerator“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Rotary regenerator" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Hajabdollahi, Hassan, und Mohammad Shafiey Dehaj. „Rotary regenerator: Constructal thermoeconomic optimization“. Journal of the Taiwan Institute of Chemical Engineers 113 (August 2020): 231–40. http://dx.doi.org/10.1016/j.jtice.2020.08.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Romie, F. E. „Transient Response of Rotary Regenerators“. Journal of Heat Transfer 110, Nr. 4a (01.11.1988): 836–40. http://dx.doi.org/10.1115/1.3250582.

Der volle Inhalt der Quelle
Annotation:
Exit gas temperature responses of the counterflow rotary regenerator are found for a unit step increase of the inlet temperature of either gas. An analytic solution applicable during the first part of the transient shows that the responses cannot be smooth. The overall response is found by dividing the regenerator disk into pie-shaped segments and approximating the area-mean gas temperature leaving a segment as the temperature of the gas leaving a small regenerator located at the center of the segment. The method is shown to give good accuracy and is in agreement with predictions of the analytic solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Abroshan, Hamid, und Mahdi Goodarzi. „Optimization of a three-layer rotary generator using genetic algorithm to minimize fuel consumption“. Journal of Mechanical Engineering and Sciences 14, Nr. 1 (23.03.2020): 6304–21. http://dx.doi.org/10.15282/jmes.14.1.2020.09.0494.

Der volle Inhalt der Quelle
Annotation:
Reduction of fuel consumption in power plants is an important issue due to their high rate of fuel usage. In the present article, this was done by optimizing rotary regenerator which have a great role in recovering thermal energy in power stations. Heat transfer and pressure drop through 13 popular flow passages of power plant's rotary regenerators were obtained by CFD simulations. The outcomes were used in a mathematical model of the rotary air heater by considering air leakages. The model was capable of distinguishing between different heating surfaces. Then it was used for optimizing a regenerator by genetic algorithm. Rotational speed and dimensions of all three layers (hot end, intermediate layer, and cold end) were optimized to achieve the highest fuel saving. These dimensions were: hydraulic diameters, heating profile type, and length of each layer. Results showed that redesigning these parameters to the optimal values leads to saving of 443 kg of natural gas per hour for one regenerator. A 10 meter regenerator also had the highest reduction in fuel consumption (660 kg/hr). Finally, the influence of air and hot gas temperatures, and air mass flow rate on fuel saving and optimum values of design parameters was discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hajabdollahi, Hassan. „Comparison of stationary and rotary matrix heat exchangers using teaching-learning-based optimization algorithm“. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 232, Nr. 4 (07.07.2017): 493–502. http://dx.doi.org/10.1177/0954408917719769.

Der volle Inhalt der Quelle
Annotation:
In this paper, two kinds of compact heat exchanger including plate fin heat exchanger and rotary regenerator, respectively the stationary and rotary matrix heat exchanger, are compared. For this purpose, both heat exchangers are optimized by considering three simultaneous objective functions including effectiveness, heat exchanger volume, and total pressure drop using multi-objective teaching learning based optimization algorithm. Six different design parameters are considered for the both plate fin heat exchanger and rotary regenerator. Optimization is performed for the same and different hot and cold side mass flow rates. The optimum results reveal 13.26% growth in the effectiveness, 475.17% increase in the volume, and 95.45% reduction in the pressure drop in RR as compared with plate fin heat exchanger and for the final optimum point. As a result, rotary regenerator is more suitable in the case of high effectiveness and low pressure drop while plate fin heat exchanger is more suitable in the case of space limitation (lower heat exchanger volume).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shen, C. M., und W. M. Worek. „A Correlation for the Heat Conduction Effects in Counterflow Rotary Regenerative Heat Exchangers“. Journal of Energy Resources Technology 115, Nr. 4 (01.12.1993): 287–90. http://dx.doi.org/10.1115/1.2906434.

Der volle Inhalt der Quelle
Annotation:
Equations that predict the dependence of regenerator effectiveness on heat conduction in the matrix both parallel to and perpendicular to the fluid flow are derived from numerical simulations. The equations developed use Biot numbers parallel to the direction of fluid flow (Bix) and perpendicular to the fluid flow direction (Biy), the ratio of heat capacity rates (C*), the heat capacity rate ratio (C*Γ), and the overall number of transfer units (NTUo) to characterize the regenerator performance. Comparison of numerical predictions with those obtained using the equations developed in this paper show excellent agreement. These equations enable designers to accurately account for two-dimensional conduction effects when regenerators are designed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Beck, D. S. „Regenerator Effectiveness During Transient Operation“. Journal of Engineering for Gas Turbines and Power 118, Nr. 3 (01.07.1996): 661–67. http://dx.doi.org/10.1115/1.2816699.

Der volle Inhalt der Quelle
Annotation:
Current designs of regenerative gas turbines include high-effectiveness rotary regenerators. The regenerators make the gas turbines highly efficient during steady-state operation. During engine transients, however, engine efficiency can be low because high-effectiveness regenerators tend to have large cores with large thermal masses, and it can take a long time (minutes for example) for these regenerators to reach their steady-state effectivenesses. The following criterion determines the response time of regenerators: τss˜(mc)R/Cx, where τxx (S) is the time period of transient operation; (mc)R (J/K) is the heat capacity of the core; and Cx (W/K) is the heat-capacity rate of the exhaust. This criterion has been verified through analysis and experimentation. The criterion enables the designer to estimate the fraction of an operating cycle during which the regenerator will have reduced effectiveness.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Organ, A. J. „Analysis of the gas turbine rotary regenerator“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 211, Nr. 2 (01.02.1997): 97–111. http://dx.doi.org/10.1243/0954407971526263.

Der volle Inhalt der Quelle
Annotation:
Recent solution of the ‘Hausen’ regenerator and conjugate heat transfer problems invites a fresh look at the Ritz rotary regenerator. The approach deals readily with the reflux phase (‘hold-up’, flushing or ‘residence time’) and with the effects of friction (re-heating and pressure drop). There is no necessity to assume constant Stanton number, Nst, and friction factor, Cf. With accurate temperature and flow solutions available, recovery ratios in terms of operating parameters are a fait accompli. Optimization for specified duty becomes possible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kluka, J. A., und D. G. Wilson. „Low-Leakage Modular Regenerators for Gas-Turbine Engines“. Journal of Engineering for Gas Turbines and Power 120, Nr. 2 (01.04.1998): 358–62. http://dx.doi.org/10.1115/1.2818130.

Der volle Inhalt der Quelle
Annotation:
One of the significant problems plaguing regenerator designs is seal leakage resulting in a reduction of thermal efficiency. This paper describes the preliminary design and analysis of a new regenerative heat-exchanger concept, called a modular regenerator, that promises to provide improved seal-leakage performance. The modular regenerator concept consists of a ceramic-honeycomb matrix discretized into rectangular blocks, called modules. Separating the matrix into modules substantially reduces the transverse sealing lengths and substantially increases the longitudinal sealing lengths as compared with typical rotary designs. Potential applications can range from small gas-turbine engines for automotive applications to large stationary gas turbines for industrial power generation. Descriptions of two types of modular regenerators are presented including sealing concepts. Results of seal leakage analysis for typical modular regenerators sized for a small gas-turbine engine (120 kW) predict leakage rates under one percent for most seal-clearance heights.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Rao, R. V., und V. Patel. „Design optimization of rotary regenerator using artificial bee colony algorithm“. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 225, Nr. 8 (05.08.2011): 1088–98. http://dx.doi.org/10.1177/0957650911407817.

Der volle Inhalt der Quelle
Annotation:
This study explores the use of artificial bee colony (ABC) algorithm for the design optimization of rotary regenerator. Maximization of regenerator effectiveness and minimization of regenerator pressure drop are considered as objective functions and are treated individually and then simultaneously for single-objective and multi-objective optimization, respectively. Seven design variables such as regenerator frontal area, matrix rotational speed, matrix rod diameter, matrix thickness, porosity, and split are considered for optimization. A case study is also presented to demonstrate the effectiveness and accuracy of the proposed algorithm. The results of optimization using ABC algorithm are validated by comparing with those obtained using genetic algorithm for the same case study. The effect of variation of ABC algorithm parameters on convergence and fitness value of the objective function has also been presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Romie, F. E. „Response of Rotary Regenerators to Step Changes in Mass Rates“. Journal of Heat Transfer 112, Nr. 1 (01.02.1990): 43–48. http://dx.doi.org/10.1115/1.2910362.

Der volle Inhalt der Quelle
Annotation:
Rotary regenerator exit gas temperature responses to step changes in mass flow rates are presented. When the step change is the same for both gases the responses are shown to have a decaying oscillation to the final values of the exit gas temperatures. The source of the oscillations is explained. The responses are found by dividing the regenerator into pie-shaped segments and approximating the area-mean gas temperature leaving a segment as the temperature of the gas leaving a small regenerator located on the central radius of the segment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Nguyen, Ngoc-Vi, und Dong-Wook Oh. „Analysis of thermal performance of polymer rotary regenerator“. High Temperatures-High Pressures 48, Nr. 1-2 (2019): 107. http://dx.doi.org/10.32908/hthp.v48.703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

SAKAI, ITSURO, und YOSHIHIRO KAWAGUCHI. „TRANSIENT TEMPERATURE DISTRIBUTION IN ROTARY REGENERATOR HEAT EXCHANGER“. International Journal of Numerical Methods for Heat & Fluid Flow 3, Nr. 2 (Februar 1993): 173–82. http://dx.doi.org/10.1108/eb017524.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Engelbrecht, K., D. Eriksen, C. R. H. Bahl, R. Bjørk, J. Geyti, J. A. Lozano, K. K. Nielsen, F. Saxild, A. Smith und N. Pryds. „Experimental results for a novel rotary active magnetic regenerator“. International Journal of Refrigeration 35, Nr. 6 (September 2012): 1498–505. http://dx.doi.org/10.1016/j.ijrefrig.2012.05.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sanaye, Sepehr, und Hassan Hajabdollahi. „Multi-objective optimization of rotary regenerator using genetic algorithm“. International Journal of Thermal Sciences 48, Nr. 10 (Oktober 2009): 1967–77. http://dx.doi.org/10.1016/j.ijthermalsci.2009.02.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Sanaye, Sepehr, Saeid Jafari und Hadi Ghaebi. „Optimum operational conditions of a rotary regenerator using genetic algorithm“. Energy and Buildings 40, Nr. 9 (Januar 2008): 1637–42. http://dx.doi.org/10.1016/j.enbuild.2008.02.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jassim, Rahim K. „Evaluation of Combined Heat and Mass Transfer Effect on the Thermoeconomic Optimization of an Air-Conditioning Rotary Regenerator“. Journal of Heat Transfer 125, Nr. 4 (17.07.2003): 724–33. http://dx.doi.org/10.1115/1.1589504.

Der volle Inhalt der Quelle
Annotation:
The purpose of this paper is to demonstrate the importance of the use of the exergy analysis in the optimization of the geometry of a periodic-flow regenerator. The optimum geometry of the regenerator is determined using the unit cost of exergy of the warm air delivered as the objective function. The running cost is determined using different unit costs for the pressure component of exergy E˙ΔP and the thermal component of exergy E˙ΔT, which are evaluated separately. The ratio of the two unit costs has been calculated for an air-conditioning application in which the regenerator is used. A mathematical model of condensation, evaporation, thermal conductivity and heat transfer is presented for calculating the fluid and matrix temperatures effect on the regenerator performance. The governing differential equations have been formulated in terms of the characteristic dimensionless groups (Πt,Λt, and Zt).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Drost, M. K., und M. D. White. „Local Entropy Generation Analysis of a Rotary Magnetic Heat Pump Regenerator“. Journal of Energy Resources Technology 116, Nr. 2 (01.06.1994): 140–47. http://dx.doi.org/10.1115/1.2906019.

Der volle Inhalt der Quelle
Annotation:
The rotary magnetic heat pump has attractive thermodynamic performance, but it is strongly influenced by the effectiveness of the regenerator. This study uses local entropy generation analysis to evaluate the regenerator design and to suggest design improvements. The results show that performance of the proposed design is dominated by heat-transfer-related entropy generation. This suggests that enhancement concepts that improve heat transfer should be considered, even if the enhancement causes a significant increase in viscous losses (pressure drop). One enhancement technique, the use of flow disruptors, was evaluated and the results showed that flow disruptors can significantly reduce thermodynamic losses. The results of this study also suggest that, in this case, the widely used efficiency index is an inappropriate thermodynamic measure of the performance of a heat transfer enhancement technique and that a figure-of-merit based on second law considerations should be used.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

H. Abdul-Razaq, Wadhah. „Theoretical study of a Rotary Regenerator in a Thermal Power Plant“. Kirkuk University Journal-Scientific Studies 5, Nr. 2 (28.12.2010): 20–40. http://dx.doi.org/10.32894/kujss.2010.41419.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Eriksen, D., K. Engelbrecht, C. R. H. Bahl, R. Bjørk, K. K. Nielsen, A. R. Insinga und N. Pryds. „Design and experimental tests of a rotary active magnetic regenerator prototype“. International Journal of Refrigeration 58 (Oktober 2015): 14–21. http://dx.doi.org/10.1016/j.ijrefrig.2015.05.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Wilson, D. G. „Low-leakage and High-Flow Regenerators for Gas Turbine Engines“. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 207, Nr. 3 (August 1993): 195–202. http://dx.doi.org/10.1243/pime_proc_1993_207_033_02.

Der volle Inhalt der Quelle
Annotation:
The preliminary analysis and development of two new forms of regenerative heat exchanger that seem to promise greatly improved performance characteristics is described. To reduce drastically the usually high leakage and high seal wear rates suffered by present rotary regenerators, discontinuous rotation of the matrix has been studied, with seals that clamp the matrix during the stationary periods. To enable the regenerative gas turbine cycle to be used at high powers, regenerators consisting of movable ceramic modules are being investigated. The potential applications of the discontinuous-rotation type are particularly to small lightweight gas turbine engines such as those for automotive applications and to helicopters and light turboprop aircraft. The modular regenerator is being studied in application to burning coal and biomass of gas turbine engines and to larger marine and stationary base-power engines with power outputs of up to (and possibly beyond) 100 MW.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Shah, R. K., und T. Skiepko. „Influence of leakage distribution on the thermal performance of a rotary regenerator“. Applied Thermal Engineering 19, Nr. 7 (Juli 1999): 685–705. http://dx.doi.org/10.1016/s1359-4311(98)00087-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Câmara, L. D. T., und J. C. G. Tedesco. „Simulator development of a rotary magnetocaloric refrigerator by stepwise regenerator modelling approach“. Journal of Physics: Conference Series 1730, Nr. 1 (01.01.2021): 012070. http://dx.doi.org/10.1088/1742-6596/1730/1/012070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yoo, I. S., V. P. Kovalevski und S. Y. Kim. „Numerical investigation of flowing processes for regenerators of transport gas turbine units“. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217, Nr. 3 (01.01.2003): 299–309. http://dx.doi.org/10.1243/095765003322066529.

Der volle Inhalt der Quelle
Annotation:
A distributed nonlinear mathematical model for investigation of regenerative heat exchangers of both rotating-matrix and fixed-matrix is described. A noniterative numerical integration scheme for a conjugate unsteady heat exchange problem of one-dimensional flow and two-dimensional wall conduction is developed. An example study of a regenerative heat exchanger with a rotary ceramic matrix is presented. The range of optimum rotation rates supplying the highest calorific efficiency to the regenerator is determined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wu, Xi, Hong Ye, Jianxiang Wang, Jie He und Jian Yang. „Effectiveness analysis and optimum design of the rotary regenerator for thermophotovoltaic (TPV) system“. Frontiers in Energy 6, Nr. 2 (Juni 2012): 193–99. http://dx.doi.org/10.1007/s11708-012-0184-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sang, Zhenkun, Zemin Bo, Xiaojing Lv und Yiwu Weng. „Numerical Investigations of the Influencing Factors on a Rotary Regenerator-Type Catalytic Combustion Reactor“. Catalysts 8, Nr. 5 (24.04.2018): 173. http://dx.doi.org/10.3390/catal8050173.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Skiepko, Teodor. „Irreversibilities associated with a rotary regenerator and the efficiency of a steam power plant“. Heat Recovery Systems and CHP 10, Nr. 3 (Januar 1990): 187–211. http://dx.doi.org/10.1016/0890-4332(90)90002-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Mioralli, P. C., und M. M. Ganzarolli. „Thermal analysis of a rotary regenerator with fixed pressure drop or fixed pumping power“. Applied Thermal Engineering 52, Nr. 1 (April 2013): 187–97. http://dx.doi.org/10.1016/j.applthermaleng.2012.11.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bieniasz, Bogumił. „Convectional mass/heat transfer in a rotary regenerator rotor consisted of the corrugated sheets“. International Journal of Heat and Mass Transfer 53, Nr. 15-16 (Juli 2010): 3166–74. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

LIU, Fuguo. „Coupled Gas Leakage and Heat Transfer Modeling in Tri-section Rotary Regenerator and Its Application“. Journal of Mechanical Engineering 48, Nr. 14 (2012): 148. http://dx.doi.org/10.3901/jme.2012.14.148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

San, J. Y., und S. C. Hsiau. „Effect of axial solid heat conduction and mass diffusion in a rotary heat and mass regenerator“. International Journal of Heat and Mass Transfer 36, Nr. 8 (Januar 1993): 2051–59. http://dx.doi.org/10.1016/s0017-9310(05)80136-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Jassim, Rahim K., und Tahar Khir. „Exergoeconomic optimisation of an air-conditioning rotary regenerator: effect of matrix thermal conductivity on its performance“. International Journal of Exergy 1, Nr. 2 (2004): 215. http://dx.doi.org/10.1504/ijex.2004.005098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Fortkamp, F. P., D. Eriksen, K. Engelbrecht, C. R. H. Bahl, J. A. Lozano und J. R. Barbosa. „Experimental investigation of different fluid flow profiles in a rotary multi-bed active magnetic regenerator device“. International Journal of Refrigeration 91 (Juli 2018): 46–54. http://dx.doi.org/10.1016/j.ijrefrig.2018.04.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Bieniasz, Bogumił. „Intensity of convective mass/heat transfer in a rotary regenerator rotor with the transverse needle-fins“. Heat and Mass Transfer 50, Nr. 9 (27.03.2014): 1211–23. http://dx.doi.org/10.1007/s00231-014-1330-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Porowski, Mieczysław, und Edward Szczechowiak. „Influence of longitudinal conduction in the matrix on effectiveness of rotary heat regenerator used in air-conditioning“. Heat and Mass Transfer 43, Nr. 11 (17.11.2006): 1185–200. http://dx.doi.org/10.1007/s00231-006-0205-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Skiepko, Teodor, und Ramesh K. Shah. „A comparison of rotary regenerator theory and experimental results for an air preheater for a thermal power plant“. Experimental Thermal and Fluid Science 28, Nr. 2-3 (Januar 2004): 257–64. http://dx.doi.org/10.1016/s0894-1777(03)00048-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Chung, Hyun Joon, Joo Seong Lee, Changhyun Baek, Hoon Kang und Yongchan Kim. „Numerical analysis of the performance characteristics and optimal design of a plastic rotary regenerator considering leakage and adsorption“. Applied Thermal Engineering 109 (Oktober 2016): 227–37. http://dx.doi.org/10.1016/j.applthermaleng.2016.08.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Rose, Douglas, und John Becker. „Method for making a radial flow ceramic rotor for rotary type regenerator heat exchange apparatus: And attendant ceramic rotor constructions“. Journal of Heat Recovery Systems 6, Nr. 1 (Januar 1986): x. http://dx.doi.org/10.1016/0198-7593(86)90202-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Raja, Bansi D., R. L. Jhala und Vivek Patel. „Multi-objective optimization of a rotary regenerator using tutorial training and self-learning inspired teaching-learning based optimization algorithm (TS-TLBO)“. Applied Thermal Engineering 93 (Januar 2016): 456–67. http://dx.doi.org/10.1016/j.applthermaleng.2015.10.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sun, Qing Zhou, Jian Jing, Pu Qing Zhang, Zhong Kui Zhao und Jian Wang. „Principle and Applications of Grinding Wheel Regenerator“. Applied Mechanics and Materials 121-126 (Oktober 2011): 301–5. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.301.

Der volle Inhalt der Quelle
Annotation:
Grinding wheel regenerator is composed of grinding wheel, fluidized bed, airblower, motor and dust-removal system. After being put into regenerator, used-sand is in the fluidized state under the action of airflow. Grinding wheel, buried into sand, rotates with high speed. During above process, strong collision and friction are caused between sand and high-speed rotating grinding wheel, machine body and sands, which make adhesive film peeled off and used-sand regenerated. The paper introduces operation principle of grinding wheel regenerator and studies experimentally about the influence of regenerator’s rotate speed on sand breakage rate. The study reveals that rotate speed has effect on breakage rate of reclaimed sand. Sand breakage rate increases with the raising of rotate speed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Bieniasz, Bogumił. „Intensification of convectional mass/heat transfer in a rotary regenerator rotor by application sheets with the slits for breaking a boundary layer“. International Journal of Heat and Mass Transfer 55, Nr. 1-3 (Januar 2012): 302–9. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.09.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

You, Yonghua, Shen Yu, Yuqian Tian, Xiaobing Luo und Suyi Huang. „A numerical study on the unsteady heat transfer in active regenerator with multi-layer refrigerants of rotary magnetic refrigerator near room temperature“. International Journal of Refrigeration 65 (Mai 2016): 238–49. http://dx.doi.org/10.1016/j.ijrefrig.2016.02.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Sianturi, Tambos. „Analisa Pipa Heat Exchanger (Cooling Tube) Bervariasi Pada Turbine Guide Bearing Pembangkit Listrik Tenaga Air Siguragura“. SPROCKET JOURNAL OF MECHANICAL ENGINEERING 2, Nr. 2 (26.02.2021): 49–62. http://dx.doi.org/10.36655/sproket.v2i2.313.

Der volle Inhalt der Quelle
Annotation:
A heat exchanger is a medium used to produce heat transfer from one fluid to another. Heat Exchanger can be used to raise the temperature or as a heater (regenerator) or lower the temperature or as a coolant (recuperator) depending on the view of heat transfer that occurs. Heat exchangers have been widely used in industries such as the chemical industry, paper industry, power plants, and other industries. In the example, each machine unit uses a heat exchanger media (especially rotary type machines) to keep the bearing temperature in normal temperature even though the unit is operated continuously or continuously. This study will analyze the temperature drop that occurs when the length of the heat exchanger pipe is added to the turbine guide bearing of PLTA Siguragura. From the research results, the maximum temperature on the guide bearing cooling tube reaches 47.3 [° C], the overall heat transfer coefficient on the guide bearing cooling tube is 98.87 [W / m²ºC], ∆Tmin on the guide bearing cooling tube installed (with 2 layers) is 14.1 [° C] and ∆Tmin which can be achieved with a cross-sectional area of ​​5.73 [m²] is 6.63 [° C]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Leong, K. C., K. C. Toh und S. H. Wong. „Microcomputer-based design of rotary regenerators“. Heat Recovery Systems and CHP 11, Nr. 6 (Januar 1991): 461–70. http://dx.doi.org/10.1016/0890-4332(91)90048-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Van den Bulck, E., J. W. Mitchell und S. A. Klein. „The Use of Dehumidifiers in Desiccant Cooling and Dehumidification Systems“. Journal of Heat Transfer 108, Nr. 3 (01.08.1986): 684–92. http://dx.doi.org/10.1115/1.3246990.

Der volle Inhalt der Quelle
Annotation:
The use of rotary dehumidifiers in gas-fired open-cycle desiccant cooling systems is investigated by analyzing the performance of the rotary heat exchanger–rotary dehumidifier subsystem. For a given cooling load, the required regeneration heat supply can be minimized by choosing appropriate values for the regeneration air mass flow rate and the wheel rotation speed. A map is presented showing optimal values for rotational speed and regeneration flow rate as functions of the regeneration air inlet temperature and the process air inlet humidity ratio. This regeneration temperature is further optimized as a function of the process humidity ratio. In the analysis, the control strategy adjusts the process air mass flow rate to provide the required cooling load. Additional control options are considered and the sensitivity of the regeneration heat required to the wheel speed, regeneration air mass flow rate, and inlet temperature is discussed. Experimental data reported in the literature are compared with the analytical results and indicate good agreement.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Yue, Ming, Yun Fei Ding und Hui Jun Wu. „Analysis of Energy Consumption and Mode of Energy Saving of Rotary Wheel“. Advanced Materials Research 374-377 (Oktober 2011): 451–55. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.451.

Der volle Inhalt der Quelle
Annotation:
A model of rotary wheel combined with heat pump regeneration was presented and an experimental investigation on it was also carried out. Five normal kinds of dehumidification efficiency evaluation standard were introduced in view of the existing various dehumidifying method while the current energy efficiency evaluation indices were analyzed. SMER which defines the dehumidification quantity of unit energy consumption and dehumidification system energy efficiency were introduced and used to compare energy consumption of rotary wheel with or without heat pump. The comparative analysis showed that the system of rotary wheel combined with heat pump regeneration could significantly improve SMER and dehumidification system energy efficiency of rotary wheel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Van den Bulck, E., S. A. Klein und J. W. Mitchell. „Second Law Analysis of Solid Desiccant Rotary Dehumidifiers“. Journal of Solar Energy Engineering 110, Nr. 1 (01.02.1988): 2–9. http://dx.doi.org/10.1115/1.3268233.

Der volle Inhalt der Quelle
Annotation:
This paper presents a second law analysis of solid desiccant rotary dehumidifiers. The equations for entropy generation for adiabatic flow of humid air over a solid desiccant are developed. The generation of entropy during operation of a rotary dehumidifier with infinite transfer coefficients is investigated and the various sources of irreversibility are identified and quantified. As they pass through the dehumidifier, both the process and regeneration air streams acquire nonuniform outlet states, and mixing both of these air streams to deliver homogeneous outlet streams is irreversible. Transfer of mass and energy between the regeneration air stream and the desiccant matrix occurs across finite differences in vapor pressure and temperature and these transfer processes generate entropy. The second law efficiency of the dehumidifier is given as a function of operating conditions and the effect of finite transfer coefficients for an actual dehumidifier is discussed. It is shown that operating the rotary dehumidifier at conditions that minimize regeneration energy also yields a local maximum for the second law efficiency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Zheng, Peng, Ruichen Wang, Jingwei Gao und Xiang Zhang. „Parameter Optimisation of Power Regeneration on the Hydraulic Electric Regenerative Shock Absorber System“. Shock and Vibration 2019 (11.06.2019): 1–13. http://dx.doi.org/10.1155/2019/5727849.

Der volle Inhalt der Quelle
Annotation:
With the increasingly prominent energy issues, regenerative shock absorber has attracted intensive attention in last two decades for the development of structure design. However, the researchers sometimes concentrate on conceptual designs without considering optimal parameter refinements. This paper proposes a regenerative shock absorber called the “hydraulic electric regenerative shock absorber (HERSA)” which includes an analytical regeneration performance parameters optimisation approach to promote the regeneration efficiency and regenerated power. The developed HERSA model is able to convert oscillatory motion into unidirectional rotary motion through the alteration of hydraulic flow while recovering power by a generator. The proposed model is also capable of obtaining the optimal parameters at certain condition, as well as providing the flexibility of different component combinations to match specific system need. The results demonstrate that the proposed model can effectively decide the optimal parameters in the system, and also the recoverable power can achieve average power of 331 W at 1 Hz-25 mm sinusoidal excitation in the system, which is approximately 65% efficiency. This study can be further used to guide prototype design in future study.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Zheng, W., W. M. Worek und D. Novosel. „Effect of Operating Conditions on Optimal Performance of Rotary Dehumidifiers“. Journal of Energy Resources Technology 117, Nr. 1 (01.03.1995): 62–66. http://dx.doi.org/10.1115/1.2835322.

Der volle Inhalt der Quelle
Annotation:
The design-point dehumidification performance (i.e., at ARI conditions) of a rotary dehumidifier wheel depends on its rotational speed, the sorption properties of the desiccant, the heat and mass transfer characteristics of the matrix, and the size of the dehumidifier. However, the real operating conditions of a rotary dehumidifier can vary significantly from the design point, given the large variations in operating conditions (i.e., the outdoor, indoor, and regeneration temperatures and humidities) for various locations during different times of the year. This paper investigates the variability of the dehumidification performance of a rotary dehumidifier and its dependence on operating conditions. Also, the effect of the operating conditions on the optimum rotational speed of a rotary dehumidifier, where the performance of a rotary dehumidifier is optimized, is described.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Lu, Wen Long, Shan Li, Ying Luo und Qiang Chen. „Based Fluent Study of Rotary Stream for Sand Reclamation Equipment“. Applied Mechanics and Materials 741 (März 2015): 486–89. http://dx.doi.org/10.4028/www.scientific.net/amm.741.486.

Der volle Inhalt der Quelle
Annotation:
The basic structure and principles of rotary stream for sand reclamation device will be introduction. According to the principle of renewable rotary stream for sand reclamation equipment, combination with Fluent numerical simulation model to construct the old sand regeneration process. And according to the impact velocity control problem for sand, using discrete phase model and turbulent model, the sand movement tracking and turbulent kinetic energy and the blowpipe of equipment were analyzed, finally puts forward some suggestions for improvement.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Wang, Shu Hui, Meng Xu und Ming Guo Yu. „Effect of Rotary Partition DPF Structure on its Regeneration Characteristics with Microwave“. Applied Mechanics and Materials 556-562 (Mai 2014): 1013–16. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1013.

Der volle Inhalt der Quelle
Annotation:
The energy that traditional diesel particulate filter (DPF) regeneration with microwave requires in regeneration process often exceeds the capacity of the vehicle's battery, a rotary partition regenerative DPF with microwave is proposed recently, which was a annular column consisting of the fan-shaped filter units. A filtration unit microwave heating regeneration model was established aiming at this DPF, to study the regenerative properties of the filtration unit and to get influence that its shape structure plays on reproduction characteristics. The results show that: the central angle, length to diameter ratio, the ratio of inner and outer diameter of the DPF all have larger impact on the regeneration. The results can provide theoretical basis and reference for practical development of the new DPF.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie