Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rossby waves“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rossby waves" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rossby waves"
Knessl, Charles, und Joseph B. Keller. „Rossby Waves“. Studies in Applied Mathematics 94, Nr. 4 (Mai 1995): 359–76. http://dx.doi.org/10.1002/sapm1995944359.
Der volle Inhalt der QuelleMüller, Detlev. „Trapped Rossby waves“. Physical Review E 61, Nr. 2 (01.02.2000): 1468–85. http://dx.doi.org/10.1103/physreve.61.1468.
Der volle Inhalt der QuelleCheverry, Christophe, Isabelle Gallagher, Thierry Paul und Laure Saint-Raymond. „Trapping Rossby waves“. Comptes Rendus Mathematique 347, Nr. 15-16 (August 2009): 879–84. http://dx.doi.org/10.1016/j.crma.2009.05.007.
Der volle Inhalt der QuelleBiancofiore, L., und F. Gallaire. „Counterpropagating Rossby waves in confined plane wakes“. Physics of Fluids 24, Nr. 7 (Juli 2012): 074102. http://dx.doi.org/10.1063/1.4729617.
Der volle Inhalt der QuelleAvalos-Zuniga, R., F. Plunian und K. H. Rädler. „Rossby waves andα-effect“. Geophysical & Astrophysical Fluid Dynamics 103, Nr. 5 (Oktober 2009): 375–96. http://dx.doi.org/10.1080/03091920903006099.
Der volle Inhalt der QuelleMiles, John. „Resonantly Forced Rossby Waves“. Journal of Physical Oceanography 15, Nr. 4 (April 1985): 467–74. http://dx.doi.org/10.1175/1520-0485(1985)015<0467:rfrw>2.0.co;2.
Der volle Inhalt der QuelleFedotova, Maria, Dmitry Klimachkov und Arakel Petrosyan. „Resonant interactions of magneto-Poincaré and magneto-Rossby waves in quasi-two-dimensional rotating astrophysical plasma“. Monthly Notices of the Royal Astronomical Society 509, Nr. 1 (14.10.2021): 314–26. http://dx.doi.org/10.1093/mnras/stab2957.
Der volle Inhalt der QuelleSong, Jian, und ShaoXia Liu. „The barotropic Rossby waves with topography on the earth’s δ-surface“. International Journal of Nonlinear Sciences and Numerical Simulation 21, Nr. 7-8 (18.11.2020): 781–88. http://dx.doi.org/10.1515/ijnsns-2019-0178.
Der volle Inhalt der QuelleDikpati, Mausumi, Peter A. Gilman, Gustavo A. Guerrero, Alexander G. Kosovichev, Scott W. McIntosh, Katepalli R. Sreenivasan, Jörn Warnecke und Teimuraz V. Zaqarashvili. „Simulating Solar Near-surface Rossby Waves by Inverse Cascade from Supergranule Energy“. Astrophysical Journal 931, Nr. 2 (01.06.2022): 117. http://dx.doi.org/10.3847/1538-4357/ac674b.
Der volle Inhalt der QuelleKALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO und P. K. SHUKLA. „Rossby-wave driven zonal flows in the ionospheric E-layer“. Journal of Plasma Physics 73, Nr. 1 (Februar 2007): 131–40. http://dx.doi.org/10.1017/s0022377806004351.
Der volle Inhalt der QuelleDissertationen zum Thema "Rossby waves"
Cotto, Amaryllis. „Intermittently Forced Vortex Rossby Waves“. FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/553.
Der volle Inhalt der QuelleProehl, Jeffrey A. „Equatorial wave-mean flow interaction : the long Rossby waves /“. Thesis, Connect to this title online; UW restricted, 1988. http://hdl.handle.net/1773/10960.
Der volle Inhalt der QuelleMurphy, Darryl Guy. „Rossby waves in the Southern Ocean“. Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303178.
Der volle Inhalt der QuelleWood, R. G. „Rossby waves in mid-latitude oceans“. Thesis, University of Essex, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379474.
Der volle Inhalt der QuelleKovalam, Sujata. „MF radar observations of tides and planetary waves“. Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phk878.pdf.
Der volle Inhalt der QuelleFyfe, John. „A barotropic stability study of free and forced planetary waves /“. Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75433.
Der volle Inhalt der QuelleThe frequencies of all infinitesimal perturbations to the equilibrium flows are determined numerically as a function of the flow parameters. The results are interpreted using a truncated spectral model and related to those of previous studies with infinite $ beta$-planes. In contrast to some earlier analytical studies we find that unstable long waves $(L sb{x}$ $>$ $L sb{y})$ exist under superresonant conditions. We also report on the existence of an interesting travelling topographic instability.
The linear instability of a weakly non-zonal flow is investigated numerically and analytically (via WKB theory). The theory reproduces the qualitative nature of the numerically-determined fastest-growing mode.
Nonlinear integrations, involving many degrees of freedom, reveal that initially-infinitesimal disturbances may grow explosively to finite-amplitude. The longer-term integrations are interpreted using a statistical mechanical model.
Giannitsis, Constantine 1971. „Non-linear saturation of vertically propagating Rossby waves“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/53043.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 203-208).
Linear quasi-geostrophic theory predicts an exponential amplitude increase with height for Rossby waves propagating vertically through a stratified atmosphere, as a result of wave activity density conservation. At the same time layer-wise conservation of potential enstrophy constrains wave amplitudes, given the limited amount of potential enstrophy available in the initial mean flow. A break down of linear theory is thus expected above a certain critical wave amplitude, raising the question of how the non-linear flow reacts to limit the vertical penetration of waves. Keeping in mind the potential importance for the dynamics of the winter stratosphere, where strong wave penetration and amplitude growth are often observed, the issue of wave saturation in a non-linear flow is examined in a generally abstract context, through a variety of simple model studies. We thus consider the cases of a topographically forced barotropic beta plane channel model, of vertical propagation through a three-dimensional beta plane channel model, and of a polar coordinate model with realistic basic state and geometry. In the barotropic model transient wave growth is forced through the use of bottom topography and the deviations of the non-linear flow evolution from the predictions of both a linear and a quasi-linear analytical solution are examined for strong topographic anomalies. The growth of the forced wave is found to decelerate the zonal mean flow which in turn reduces the topographic forcing. Wave-mean flow interactions are thus found to be sufficient in leading to saturation of the eddy amplitudes. Interestingly it is the formation of zonal mean easterlies, rather than the depletion of mean available potential enstrophy, that is found to be the crucial factor in the saturation dynamics. Similar results are obtained for the case of vertical propagation through a three dimensional beta plane channel. The vertical penetration of the forced wave is shown to cause a reduction of the zonal mean winds and mean potential vorticity gradients in the center of the channel, eventually leading to the formation of either a critical line or a refractive index turning surface. In both cases the penetration of the wave to high altitudes is prohibited, thus constraining wave amplitudes. While signs of non-linear behaviour are clear in synoptic maps of potential vorticity, wave-wave interactions are found to play a secondary role in the saturation process. The results of the three-dimensional beta plane channel model are then extended to a more realistic set-up, using a polar coordinate model with a basic state based on the observed winter stratosphere climatology. The basic conclusions of the idealized study are shown to remain unchanged.
by Constantine Giannitsis.
Ph.D.
Ash, Ellis R. „Rossby waves and mean currents in the Southern Ocean“. Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/11542.
Der volle Inhalt der QuelleYang, Gui-Ying. „Propagation of nonstationary Rossby waves and extratropical-tropical interaction“. Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.646005.
Der volle Inhalt der QuelleJonsson, Eskil. „Modelling the Formation and Propagation of Orographic Rossby Waves“. Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325188.
Der volle Inhalt der QuelleOrografiska Rossby-vågor är den huvudsakliga mekanismen genom vilken jetströmmarnaslingrar runt jorden och kan ha en omfattande inverkan på väder och klimat (kapitel 1). Därförär de av särskild betydelse att studera och detta projekt bör fungera som en utgångspunkt förvad man måste överväga när man försöker modellera dessa vågor. Till exempel så måste vi tahänsyn till tryckgradienter, Coriolis-effekten, orografi, potentiell vorticitetsbevarande och ävenjordens krökning på denna skala. Dessa beskrivs i detalj i kap. 2 och anpassas tillrörelseekvationerna för grunt vatten (Saint-Venant-ekvationerna). Därefter presenteras någranumeriska tekniker på grundläggande nivå för att lösa dessa ekvationer i kap. 2.4, varvid desedan implementeras för de globala Saint-Venant-ekvationerna med bevarad potentiellvorticitet i kap 3. Modellen är validerad för typiska grunda vattenflöden i ett badkar ochpasserar vanliga numeriska tester så som Gauss-kurvtestet (kap. 4.1) och bore-testet. Mennär vi överväger atmosfäriska flöden (kap. 4.2) blir det tydligt att våra modeller och numeriskametoder är primitiva och inte kan reproducera Rossby-vågor på ett stabilt sätt. Därmed,modifierar vi Hogans modell (Hogan, n.d) för att passa vår modell vilket resulterar orografiskaRossby-vågor. Dock så är dessa förskjutna och stämmer inte riktigt överens med teorin i kap.2.2. Även Hogans modell visar sig ha allvarliga begränsningar då vågorna propagerar i felriktning. Därmed är denna studie ej komplett och kräver ytterligare utveckling för att varaanvändbar.
Bücher zum Thema "Rossby waves"
United States. National Aeronautics and Space Administration., Hrsg. Waves and instability in the atmosphere of Mars: Final report, July 1, 1987 - December 31, 1990. [Washington, DC: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Waves and instability in the atmosphere of Mars: Final report, July 1, 1987 - December 31, 1990. [Washington, DC: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenJohn, Stanford. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenJohn, Stanford. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenR, Ziemke J., und United States. National Aeronautics and Space Administration., Hrsg. Rossby-gravity waves in tropical total ozone data. [Washington, DC: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenVolland, Hans. Atmospheric tidal and planetary waves. Dordrecht: Kluwer Academic Publishers, 1988.
Den vollen Inhalt der Quelle findenChiu, Ching-Sang. Estimation of planetary wave parameters from the data of the 1981 Ocean Acoustic Tomography Experiment. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1985.
Den vollen Inhalt der Quelle findenR, Reiter Elmar, und United States. National Aeronautics and Space Administration., Hrsg. Atmospheric planetary wave response to external forcing: Final technical report, NASA grant NAG 5-136. [Washington, D.C: National Aeronautics and Space Administration, 1985.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Large-scale dynamics and transport in the stratosphere. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Large-scale dynamics and transport in the stratosphere. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Rossby waves"
Zeytounian, Radyadour. „Rossby Waves“. In Asymptotic Modeling of Atmospheric Flows, 44–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_4.
Der volle Inhalt der QuelleMonin, A. S. „Rossby Waves“. In Theoretical Geophysical Fluid Dynamics, 237–75. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1880-1_7.
Der volle Inhalt der QuellePedlosky, Joseph. „Rossby Waves“. In Waves in the Ocean and Atmosphere, 149–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_14.
Der volle Inhalt der QuelleKamenkovich, V. M., M. N. Koshlyakov und A. S. Monin. „Theory of Rossby Waves“. In Synoptic Eddies in the Ocean, 34–130. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4502-9_2.
Der volle Inhalt der QuellePedlosky, Joseph. „Rossby Waves (Continued), Quasi-Geostrophy“. In Waves in the Ocean and Atmosphere, 159–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_15.
Der volle Inhalt der QuelleDolzhansky, Felix V. „The Obukhov–Charney Equation; Rossby Waves“. In Fundamentals of Geophysical Hydrodynamics, 61–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31034-8_7.
Der volle Inhalt der QuelleSkiba, Yuri N. „Stability of Rossby-Haurwitz (RH) Waves“. In Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere, 109–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65412-6_5.
Der volle Inhalt der QuelleBoyd, John P. „Kelvin, Yanai, Rossby and Gravity Waves“. In Dynamics of the Equatorial Ocean, 35–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55476-0_3.
Der volle Inhalt der QuellePedlosky, Joseph. „Energy and Energy Flux in Rossby Waves“. In Waves in the Ocean and Atmosphere, 173–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05131-3_16.
Der volle Inhalt der QuelleSardeshmukh, Prashant, Cécile Penland und Matthew Newman. „Rossby waves in a stochastically fluctuating medium“. In Stochastic Climate Models, 369–84. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8287-3_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Rossby waves"
Zaqarashvili, T. V., und Ivan Zhelyazkov. „Rossby Waves in Rotating Magnetized Fluids“. In SPACE PLASMA PHYSICS: School of Space Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137937.
Der volle Inhalt der QuelleSukoriansky, Semion, Nadejda Dikovskaya, Roger Grimshaw und Boris Galperin. „Rossby waves and zonons in zonostrophic turbulence“. In WAVES AND INSTABILITIES IN SPACE AND ASTROPHYSICAL PLASMAS. AIP, 2012. http://dx.doi.org/10.1063/1.3701355.
Der volle Inhalt der QuelleChen, Y. N., U. Haupt, U. Seidel und M. Rautenberg. „Experimental Investigation of the Longitudinal-Vortex-Nature of Rotating Stall in Vaneless Diffusers of Centrifugal Compressors“. In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-099.
Der volle Inhalt der QuelleShevkar, Prafulla P., Anoop M V, Philippe Odier und Manikandan Mathur. „Video: Experimental visualization of Rossby waves as transport barriers“. In 76th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2023. http://dx.doi.org/10.1103/aps.dfd.2023.gfm.v0009.
Der volle Inhalt der QuelleCampbell, L. J. „Nonlinear dynamics of Rossby waves in a western boundary current“. In ADVANCES IN FLUID MECHANICS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/afm06045.
Der volle Inhalt der QuelleChu, Peter C., und Chin-Lung Fang. „Observed Rossby waves in the South China Sea from satellite altimetry data“. In Remote Sensing, herausgegeben von Charles R. Bostater, Jr. und Rosalia Santoleri. SPIE, 2004. http://dx.doi.org/10.1117/12.509064.
Der volle Inhalt der Quelledel-Castillo-Negrete, D., J. M. Finn und D. C. Barnes. „The modified drift-Poisson model: Analogies with geophysical flows and Rossby waves“. In Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302113.
Der volle Inhalt der QuelleKALADZE, T. D., D. J. WU, O. A. POKHOTELOV, R. Z. SAGDEEV, L. STENFLO und P. K. SHUKLA. „ZONAL FLOW GENERATION BY MAGNETIZED ROSSBY WAVES IN THE IONOPHERIC E-LAYER“. In Proceedings of the 12th Regional Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770523_0026.
Der volle Inhalt der QuelleMorey, Steve, Dmitry Dukhovskoy und Cortis K. Cooper. „SS: Metocean: Measurements and Modeling Measurements of Topographic Rossby Waves along the Sigsbee Escarpment“. In Offshore Technology Conference. Offshore Technology Conference, 2010. http://dx.doi.org/10.4043/20694-ms.
Der volle Inhalt der QuelleDai, Yuqiang, Fengxia Liu, Jintao Wu, Wei Wei, Dapeng Hu und Xuewu Liu. „Influence of Skewing of Contact Face on Performance of Wave Rotor Refrigerators and Superchargers“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63449.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Rossby waves"
Peng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada532809.
Der volle Inhalt der QuellePeng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada541436.
Der volle Inhalt der QuellePeng, Melinda S. Role of Vortex Rossby Waves on Tropical Cyclone Intensity. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada631046.
Der volle Inhalt der QuelleMontgomery, Michael T., und Lloyd J. Shapiro. Vortex Rossby Waves and Hurricane Evolution in the Presence of Convection and Potential Vorticity and Hurricane Motion. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628370.
Der volle Inhalt der Quelle