Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Roots (Botany) Diseases and pests“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Roots (Botany) Diseases and pests" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Roots (Botany) Diseases and pests"
Summerell, Brett, und Edward Liew. „Phytophthora root rot: its impact in botanic gardens and on threatened species conservation“. Sibbaldia: the International Journal of Botanic Garden Horticulture, Nr. 18 (21.02.2020): 89–104. http://dx.doi.org/10.24823/sibbaldia.2020.290.
Der volle Inhalt der QuelleMartyn, R. D. „Where will the next Norman Borlaug come from? A U.S. perspective of plant pathology education and research.“ Plant Protection Science 45, No. 4 (27.12.2009): 125–39. http://dx.doi.org/10.17221/22/2009-pps.
Der volle Inhalt der QuelleOndieki, Joseph Atanga, Peter Sirmah und Joseph Hitimana. „Incidence of Pests and Diseases in Tree Nurseries and Plantations in Kimondi Forest, Nandi County, Kenya“. East African Journal of Forestry and Agroforestry 3, Nr. 1 (05.03.2021): 18–28. http://dx.doi.org/10.37284/eajfa.3.1.287.
Der volle Inhalt der QuelleBeal, P. R., und D. C. Joyce. „Cutflower characteristics of terminal flowering tropical Grevillea: a brief review“. Australian Journal of Experimental Agriculture 39, Nr. 6 (1999): 781. http://dx.doi.org/10.1071/ea98181.
Der volle Inhalt der QuelleMaroyi, Alfred. „Albizia Adianthifolia: Botany, Medicinal Uses, Phytochemistry, and Pharmacological Properties“. Scientific World Journal 2018 (20.09.2018): 1–18. http://dx.doi.org/10.1155/2018/7463584.
Der volle Inhalt der QuelleBouraïma, Amoussatou, Rachidatou Sikirou, Bruno Zocli, Vincent Ezin, Sètondji Alban Paterne Etchiha Afoha, Léopold Simplice Gnancadja, Adolphe Adjanonhoun und Kerstin Hell. „Pests and Diseases Associated with Yam Bean (Pachyrhizus erosus) Cultivation at Farmers’ Levels in the Central Region of Benin“. Biosaintifika: Journal of Biology & Biology Education 12, Nr. 2 (01.08.2020): 132–39. http://dx.doi.org/10.15294/biosaintifika.v12i2.23771.
Der volle Inhalt der QuelleDe Nardi, Barbara, René Dreos, Lorenzo Del Terra, Chiara Martellossi, Elisa Asquini, Patrizia Tornincasa, Debora Gasperini et al. „Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance“. Genome 49, Nr. 12 (Dezember 2006): 1594–605. http://dx.doi.org/10.1139/g06-125.
Der volle Inhalt der QuelleGurr, Geoff M., Jian Liu, Anne C. Johnson, Deane N. Woruba, Gunnar Kirchhof, Ryosuke Fujinuma, William Sirabis, Yapo Jeffery und Ramakrishna Akkinapally. „Pests, diseases and crop protection practices in the smallholder sweetpotato production system of the highlands of Papua New Guinea“. PeerJ 4 (07.12.2016): e2703. http://dx.doi.org/10.7717/peerj.2703.
Der volle Inhalt der QuelleBezerra, Gabrielle Alves, Afra Vital Matos Dias Gabriel, Eduardo D. Mariano und Jean Carlos Cardoso. „In vitro culture and greenhouse acclimatization of Oncidium varicosum (Orchidaceae) with microorganisms isolated from its roots“. Ornamental Horticulture 25, Nr. 4 (Dezember 2019): 407–16. http://dx.doi.org/10.1590/2447-536x.v25i4.2046.
Der volle Inhalt der QuelleSyvertsen, Jim, und Yoseph Levy. „Salinity Interactions with Other Abiotic and Biotic Stresses in Citrus“. HortTechnology 15, Nr. 1 (Januar 2005): 100–103. http://dx.doi.org/10.21273/horttech.15.1.0100.
Der volle Inhalt der QuelleDissertationen zum Thema "Roots (Botany) Diseases and pests"
Babur, John Leland. „Shoot Structure of Boschniakia hookeri Walpers (Orobanchaceae)“. PDXScholar, 1995. https://pdxscholar.library.pdx.edu/open_access_etds/4931.
Der volle Inhalt der QuelleBizabani, Christine. „The diversity of root fungi associated with Erica species occurring in the Albany Centre of Endemism“. Thesis, Rhodes University, 2015. http://hdl.handle.net/10962/d1018575.
Der volle Inhalt der QuelleKasiamdari, Rina Sri. „Interactions between arbuscular mycorrhizal fungi and other root-infecting fungi“. Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phk1887.pdf.
Der volle Inhalt der QuelleTimm, Alicia (Alicia Eva). „Genetic diversity of root-infesting woolly apple aphid Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae) populations in the Western Cape“. Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53436.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Characterizing the genetic structure of a pest population can provide an understanding of the factors influencing its evolution and assist in its ultimate control. The aim of the present study was to characterize the genetic structure of woolly apple aphid Eriosoma lanigerum (Hausmann) populations in the Western Cape Province in South Africa. Since this economically important apple pest has not previously been characterized at molecular level, it was necessary to evaluate methods for determining the genetic structure of E. lanigerum populations. Two different molecular techniques were evaluated viz. random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). This study represents the first application of the latter technique to members of the Aphididae. Aphids were sampled from four regions in the Western Cape in South Africa viz. Elgin, Ceres, Vyeboom and Villiersdorp. A spatially nested sampling design was used to establish the distribution of the genetic variance of aphids. A total of 192 individuals from 13 farms were analysed. Ten RAPD primers were chosen for analysis from an initial assay of 25 after fragment reproducibility had been confirmed. For AFLP analysis three different rare-cutting restriction enzymes were evaluated for AFLP analysis, viz. EcoRI, SseI and MluI. The latter yielded the best results in combination with the frequent-cutting enzyme MseI. Twenty-five AFLP selective primer pairs were evaluated, out of which five were chosen for analysis of the total population. Two hundred and fifty AFLP fragments and 47 RAPD fragments were scored for analysis. Both analyses indicated that a low level of genetic variation was apparent in E. lanigerum populations and that no differentiation resulted from geographic isolation. From RAPD analyses it was deduced that all variation could be attributed to differences between individuals. AFLP analysis indicated that, whereas genetic differences in E. lanigerum populations between orchards were negligible, a significant portion of genetic variation could be attributed to differences between farms and individuals within farms. Therefore, AFLP analysis allowed for finer discrimination of the genetic structure of E. lanigerum populations than RAPD analysis and is recommended for studies of other aphid species. The fact that most of the genetic variation present in E. lanigerum populations could be found on small spatial scales indicated that sampling individuals over a wide geographic area was an ineffective way of detecting the genetic diversity present in E. lanigerum populations. The low level of variation in populations is most likely due to the exclusive occurrence of parthenogenetic reproduction, founder effects (including distribution of infested plant material from a limited source) and selective factors such as the use of resistant rootstocks or pesticides. Furthermore, the low level of variation found indicated that the possibility of controlling E. lanigerum in the Western Cape using host plant resistance is favourable. Thus, plant breeders developing resistance to E. lanigerum can expect plant entries to be exposed to most of the genetic diversity present in Western Cape populations, regardless of location.
AFRIKAANSE OPSOMMING: Die bepaling van die genetiese struktuur van 'n landboukundige plaagpopulasie kan lei tot begrip van die faktore wat die populasie beïnvloed en kan uiteindelike beheer vergemaklik. Die doel van die huidige studie was om die genetiese struktuur van die appelbloedluis Eriosoma lanigerum (Hausmann) in die Wes-Kaap Provinsie van Suid-Afrika te bepaal. Aangesien hierdie belangrike appelplaag nie van tevore op molekulêre vlak bestudeer is nie, was dit nodig om metodes vir die bepaling van die genetiese struktuur van E. lanigerum populasies te evalueer. Twee molekulêre tegnieke is geëvalueer, nl. lukraak geamplifiseerde polimorfiese ONS (RAPD) en geamplifiseerde fragment-lengte polimorfismes (AFLP). Hierdie studie is die eerste om laasgenoemde tegniek te gebruik om lede van die Aphididae te bestudeer. Plantluise is verkry van vier verskillende gebiede in die Wes-Kaap Provinsie van Suid-Afrika nl. Elgin, Ceres, Vyeboom en Villiersdorp. 'n Hierargiese sisteem is gebruik om die verspreiding van die genetiese variasie van plantluise te bepaal. In totaal is 192 individue van 13 plase geanaliseer. Tien RAPD inleiers is gekies uit 'n analise van 25 verskillende inleiers nadat fragment reproduseerbaarheid bevestig is. Drie verskillende restriksie ensieme is geëvalueer vir AFLP analise nl. EcoRI, SseI en Mlul. Die beste resultate is verkry toe MluI saam met MseI gebruik is. Vyf-en-twintig AFLP selektiewe inleier pare is geëvalueer waarvan vyf gekies is vir analise van die totale populasie. Twee-honderd-en-vyftig AFLP fragmente en 47 RAPD fragmente is gedokumenteer vir analise. Beide RAPD en AFLP analises het getoon dat daar 'n lae vlak van genetiese variasie in E. lanigerum populasies is en dat geen differensiasie as gevolg van geografiese isolasie ontstaan het nie. Uit RAPD analise is daar afgelei dat al die variasie toegeskryf kon word aan verskille tussen individue. AFLP het aangetoon dat alhoewel verskille in E. lanigerum populasies tussen boorde laag was, kon 'n hoë persentasie van die variasie toegeskryf word aan verskille tussen plase en individue binne plase. AFLP analise het meer insig in die genetiese struktuur van E. lanigerum populasies verskaf, en word dus aanbeveel vir studies van ander plantluise. Omdat meeste van die genetiese variasie oor klein geografiese afstande verkry word, is steekproefueming oor groot gebiede 'n ondoeltreffende manier om die genetiese variasie binne 'n monster te meet. Die lae vlak van genetiese variasie is waarskynlik te wyte aan partenogenetiese vermeerdering, stigter gevolge (insluitend verspreiding van geïnfesteerde plantmateriaal vanaf 'n beperkte bron), sowel as selektiewe faktore soos die gebruik van bestande onderstokke en insekdoders. Verder dui die lae vlak van variasie aan dat die moontlikheid vir beheer deur gasheerplantbestandheid goed is in die Wes-Kaap. Planttelers kan verseker wees dat hulle plante blootgestel sal wees aan meeste van die genetiese variasie in die Wes-Kaap appelbloedluis populasies ongeag hulle ligging.
Balasubramaniam, Rengasamy. „The effects of foliar diseases and irrigation on root development, yield and yield components of wheat (Triticum aestivum L.)“. Lincoln College, University of Canterbury, 1985. http://hdl.handle.net/10182/1514.
Der volle Inhalt der QuelleTomimatsu, Gail Susan. „Quantitative Investigations of Infection and Colonization of Peanut Roots by Cylindrocladium crotalariae“. Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/76172.
Der volle Inhalt der QuellePh. D.
Van, Coller Gerhardus J. (Gerhardus Johannes). „An investigation of soilborne fungi associated with roots and crowns of nursery grapevines“. Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49844.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Soilborne diseases of grapevines represent a complex problem with limited information available, both locally and internationally. Previous research in South Africa indicated that Phytophthora and Pythium spp. were the most widespread and devastating pathogens in grapevine nurseries and vineyards in the Western Cape province. The local grapevine industry is currently expanding; new cultivars, methods and agricultural chemicals are being used which can affect soilborne pathogens. It has therefore become necessary to reassess the status of soilborne pathogens in nurseries, since information in this regard is crucial for the development of disease management practices for the expanding local grapevine industry. Soilborne fungal genera associated with roots and crowns of declining nursery grapevines were assessed in surveys conducted at three different grapevine nurseries in the Western Cape province. Cylindrocarpon, Fusarium, Pythium, and Rhizoctonia spp. were consistently isolated from roots and crowns of declining nursery grapevines. Cylindrocladiella spp. and Phytophthora cinnamomi were infrequently isolated from diseased roots, crowns and soil whereas Pythium spp. were abundant in most of the soils. Results suggest that the status of soilborne fungal pathogens in grapevine nurseries in the Western Cape province has changed over the last 30 years. The DNA phylogeny and pathogenicity of the isolates of Cylindrocladiella were determined. Four species of Cylindrocladiella occur on grapevines in South Africa, namely C. lageniformis, C. parva, C. peruviana, as well as a new species, described in this study as C. viticola, which forms part of the C. infestans species complex. Pathogenicity trials were inconclusive. Ten Fusarium spp. were isolated from roots and crowns of declining nursery grapevines, namely F. acuminatum, F. anthophilum, F. chlamydosporum, F. equiseti, F. nygamai, F. oxysporum, F. proliferatum, F. scirpi, F. semitectum and F. solani. The dominant species was F. oxysporum, followed by F. proliferatum and F. solani. In pathogenicity trials F. oxysporum and F. solani significantly reduced root volume, root dry mass, length of new shoots, stem diameter and number of leaves, but increased the percentage of chlorotic leaves and root rot severity. Fusarium proliferatum also caused a significant reduction in new shoot growth, number of leaves and increased root rot severity compared to the controls. Fusarium so/ani seems to be more virulent than F. oxysporum, followed by F. pro/iferatum. This is the first report of F. oxysporum, F. pro/iferatum and F. so/ani as pathogens of grapevines in South Africa, and the first report of F. proliferatum as a pathogen of grapevines in the world. Phytophthora cinnamomi was isolated at low frequencies from declined grapevines, although present in the rhizosphere soil. It is possible that the extensive use of downy mildew chemicals in grapevine nurseries may protect grapevines from infection by P. cinnamomi. The effect of chemicals used to combat downy mildew on Phytophthora root rot of nursery grapevines was evaluated in a glasshouse. There was very little discernable effect of the chemicals tested relative to the control plants for the parameters measured and it was concluded that the inoculation technique needed refinement. However, plants treated with phosphorous acid tended to be taller and have more leaves, greater stem diameter and root volume than controls or plants treated with the other chemicals. The data obtained in this study are not conclusive, but indicated certain trends that more glasshouse trials and field trials would resolve. Results presented in this thesis indicate that a major shift has occurred in the status of soilborne fungi associated with roots and crowns of grapevines in nurseries in the Western Cape since the 1970s when Phytophthora and Pythium were predominant. The prevalence and role of soilborne fungi need to be determined so that new appropriate disease management strategies can be developed to limit losses in grapevine nurseries and ensure the sustainable production of healthy plants for the grapevine industry.
AFRIKAANSE OPSOMMING: 'N ONDERSOEK NA GRONDGEDRAAGDE SWAMME GEASSOSIEER MET WORTELS EN KRONE VAN WINGERD IN KWEKERYE Grondgedraagde siektes van wingerd is 'n komplekse probleem waaroor min inligting, beide plaaslik en internasionaal, beskikbaar is. Vorige navorsing in Suid-Afrika het aangedui dat swamme van die genera Phytophthora en Pythium die mees algemene en vernietigende grondgedraagde patogene in kwekerye en wingerde in die Wes-Kaap provinsie is. Die plaaslike wingerdbedryf brei huidiglik uit; nuwe kultivars, metodes en landbouchemikalieë word gebruik wat 'n invloed kan hê op grondgedraagde patogene. Gevolglik het dit noodsaaklik geword om die status van grondgedraagde patogene in wingerdkwekerye weer te bepaal, aangesien inligting in hierdie verband noodsaaklik is vir die ontwikkeling van siekte bestuurspraktyke vir die ontwikkelende plaaslike wingerdbedryf. Grondgedraagde swamgenera geassosieer met wortels en krone van terugsterwende wingerd in kwekerye is bepaal in opnames wat by drie verskillende wingerdkwekerye in die Wes-Kaap provinsie uitgevoer is. Cylindrocarpon, Fusarium, Pythium, en Rhizoctonia spp. is konstant vanuit wortels en krone van terugsterwende wingerdplante in kwekery geïsoleer, Cylindrocladiella spp. en Phytophthora cinnamomi is ongereeld vanuit siek wortels, krone en grond geïsoleer, terwyl Pythium spp. algemeen in meeste gronde voorgekom het. Resultate dui daarop dat die status van grondgedraagde swampatogene in wingerdkwekerye in die Wes- Kaap provinsie oor die laaste 30 jaar verander het. Die DNA filogenie en patogenisiteit van die isolate van Cylindrocladiella is bepaal. Vier spesies van Cylindrocladiella kom voor op wingerd in Suid-Afrika, naamlik C. lageniformis, C. parva, C. peruviana, sowel as 'n nuwe spesie, wat in hierdie studie as C. viticola aangedui is en wat deel is van die C. infestans spesie kompleks. Patogenisiteits proewe was onvoldoende om die patogeniese status van die swam me te bepaal. Tien Fusarium spp. is vanuit wortels en krone van terugsterwende wingerdplante in kwekery geïsoleer, naamlik F. acuminatum, F. anthophilum, F. chlamydosporum, F. equiseti, F. nygamai, F. oxysporum, F. proliferatum, F. scirpi, F. semitectum en F. solani. Die dominante spesies was F. oxysporum, gevolg deur F. proliferatum en F. solani. In pathogenisteitsproewe het F. oxysporum en F. solani gelei tot 'n betekenisvolle laer wortelvolume, droë massa van wortels, lengte en droë massa van nuwe groei en aantal blare, maar het die persentasie chlorotiese blare en graad van wortelvrot verhoog. Fusarium proliferatum het ook gelei tot 'n betekenisvolle afname in lengte en massa van nuwe groei, aantal blare en 'n verhoogde graad van wortelvrot in vergelyking met die kontrole behandelings. Dit wil voorkom asof Fusarium solani meer virulent is as F. oxysporum, gevolg deur F. proliferatum. Hierdie is die eerste aanmelding van F. oxysporum, F. proliferatum en F. solani as patogene van wingerd in Suid-Afrika, en die eerste aanmelding van F. proliferatum as 'n patogeen van wingerd in die wêreld. Phytophthora cinnamomi is konstant teen lae frekwensies vanuit terugsterwende wingerd in kwekerye geïsoleer, alhoewel dit in risosfeer gronde teenwoordig was. Dit is moontlik dat die ekstensiewe gebruik van chemikalieë teen donsskimmel in wingerdkwekerye die wingerdplante kan beskerm teen infeksie deur P. cinnamomi. Die effek van chemikalieë wat gebruik word teen donsskimmel op Phytophthora wortelverrotting van wingerd in kwekerye, is 'n glashuis geëvalueer. Die chemikalieë wat gestoets is, het vir die gemete parameters, tot baie min onderskeibare effek gelei relatief tot die kontrole plante, en daar is afgelei dat die inokulasie tegniek verbetering benodig. Plante wat met fosforiensuur behandel is, het egter geneig om langer te wees met meer blare, 'n groter stamdeursnee en wortelvolume as kontrole plante of plante behandel met ander chemikalieë. Data verkry vanuit die hierdie studie was onvoldoende, maar sekere neigings is aangedui wat deur verdere glashuis- en veldproewe verklaar sal word. Resultate wat in hierdie tesis weergegee is, het aangedui dat 'n algehele verskuiwing in die status van grondgedraagde swamme geassosieer met wortels en krone van wingerd in kwekerye vanaf die 1970s, toe Phytophthora en Pythium die dominante genera was, plaasgevind het. Die voorkoms en rol van grondgedraagde swamme moet bepaal word, sodat nuwe voldoende siektebestuurspraktyke ontwikkel kan word om verliese in wingerdkwekerye te beperk en sodoende die volhoubare produksie van gesonde plante vir die wingerdbedryf te verseker.
Aylward, Janneke. „Diversity and dispersal of the ophiostomatoid fungus, Knoxdaviesia proteae, within Protea repens infructescences“. Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86324.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Two genera of ophiostomatoid fungi occur in the seed-bearing structures of serotinous Protea species in the Cape Floristic Region. These fungi are dispersed by arthropods, including mites and beetles that visit the Protea host plants. Although the vectors of Proteaassociated ophiostomatoid fungi are known, their dispersal patterns remain unknown – especially the manner in which recently burnt fynbos vegetation is recolonized. Additionally, their reproduction strategy has not previously been investigated. The focus of this study was, therefore, to determine the extent of within- and between-plant dispersal of Proteaassociated ophiostomatoid fungi at the population level and to investigate their reproductive strategy. One Protea-associated ophiostomatoid fungus, Knoxdaviesia proteae, is found exclusively in the fruiting structures of P. repens and was the focus of this study. In order to interrogate natural populations of this fungus, 12 polymorphic microsatellite markers specific to K. proteae were developed with an ISSR-PCR enrichment strategy and pyrosequencing. These markers were amplified in two distantly separated populations of K. proteae. The genetic and genotypic diversities of both populations were exceptionally high and neither showed significant population differentiation. The lack of population structure in both populations implies that K. proteae individuals within a P. repens stand are in panmixia. As one of the sampling sites had burnt recently, the process whereby young fynbos is recolonized could be investigated. Compared to the adjacent, unburnt area, K. proteae individuals in the burnt area of this population had significantly less private alleles, suggestive of a young population that had experienced a genetic bottleneck. Knoxdaviesia proteae individuals that did not originate from the adjacent unburnt area were encountered within the burnt site and, additionally, isolation-by-distance could not be detected. The parsimony-based haplotype networks and the tests for linkage disequilibrium indicated that recombination is taking place within as well as between the two distantly separated populations. The observed panmixia in P. repens stands, widespread recolonization and the high genetic similarity and number of migrants between the two populations emphasizes long-distance dispersal and therefore the role of beetles in the movement of K. proteae. This cohesive genetic structure and connection across large distances is likely a result of multiple migration events facilitated by beetles carrying numerous phoretic mites.
AFRIKAANSE OPSOMMING: Twee genera ophiostomatoid swamme kom in die saad-draende strukture van bloeiende Protea spesies in the Kaapse Floristiese Streek voor. Hierdie Protea-verwante ophiostomatoid swamme word gekenmerk deur hul assosiasie met geleedpotige vektore – spesifiek die myt en kewer besoekers van die Protea gasheer plante. Alhoewel die geleedpotige vektore van Protea-verwante ophiostomatoid swamme bekend is, is die wyse waarop hierdie swamme versprei onbekend; veral die manier waarop onlangse gebrande fynbos geherkoloniseer word. Verder is die voortplantings-strategie van hierdie swamme nog nie voorheen ondersoek nie. Die fokus van hierdie studie was dus om die omvang van binne- en tussen-plant verspreiding van Protea-verwante ophiostomatoid swamme te bepaal op die populasie vlak en om hul voorplantings-strategie te ondersoek. Een Protea-verwante ophiostomatoid swam, Knoxdaviesia proteae, word uitsluitlik in die vrugdraende strukture van P. repens aangetref en was die fokus van hierdie studie. Om natuurlike populasies van hierdie swam te ondersoek is 12 mikrosatelliet-merkers spesifiek vir K. proteae ontwerp deur ‘n ISSR-PCR strategie en “pyro”-basisvolgorde bepaling te gebruik. Hierdie merkers is geamplifiseer in twee K. proteae populasies wat ver van mekaar geskei is. Die genetiese en genotipiese diversiteit van beide populasies was uitsonderlik hoog en nie een het beduidende populasie-differensiasie getoon nie. Die gebrek aan populasie struktuur in beide populasies veronderstel dat K. proteae individue binne ‘n P. repens stand in panmiksia is. Aangesien een van die steekproef terreine onlangs gebrand het, kon die herkolonisasie proses van jong fynbos ondersoek word. In vergelyking met die aangrensende, ongebrande area, het K. proteae individue in die gebrande area beduidend minder private allele gehad. Dit dui op ‘n jong populasie wat ‘n genetiese bottelnek beleef het. Knoxdaviesia proteae individue wat nie van die aangrensende, ongebrande area afkomstig is nie is ook binne die gebrande terrein aangetref. Verder is afsondering-deur-afstand nie aangetref nie. Die parsimonie-gebaseerde haplotiepe-netwerke en die toetse vir koppeling-onewewigtigheid het aangedui dat rekombinasie binne sowel as tussen die twee populasies plaasvind. Die panmiksia wat waargeneem is in P. repens populasies, wydverspreide herkolonisasie en die hoë genetiese ooreenkoms en hoeveelheid immigrante tussen die twee populasies beklemtoon lang afstand verspreiding en dus die rol van kewers in die beweging van K. proteae. Hierdie samehangende genetiese struktuur en die verband oor groot afstande is waarskynlik ‘n gevolg van verskeie migrasies gefasiliteer deur kewers wat talle foretiese myte dra.
DeYoung, Robyn Merrilee. „Gall formation by Erwinia species on Douglas-fir“. Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/28980.
Der volle Inhalt der QuelleLand and Food Systems, Faculty of
Graduate
Han, Liwen 1964. „Assessment of common scab effects on the development of potato root systems using computed tomography scanning data“. Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101849.
Der volle Inhalt der QuelleBücher zum Thema "Roots (Botany) Diseases and pests"
Hagle, Susan K. Monitoring root disease mortality: Establishment report. [Missoula, Mont.]: U.S. Dept. of Agriculture, Forest Service, Northern Region, State and Private Forestry, 1985.
Den vollen Inhalt der Quelle findenGallian, John J. Management of sugarbeet root rots. [Moscow, Idaho]: University of Idaho Cooperative Extension Service, 2001.
Den vollen Inhalt der Quelle findenSchmitt, Craig L. Annosus root disease of western conifers. 2. Aufl. [Washington, D.C.?]: U.S. Dept. of Agriculture, Forest Service, 2000.
Den vollen Inhalt der Quelle findenInternational, Conference on Root and Butt Rots (13th 2011 Florence Italy; San Martino di Castrozza Italy). XIII Conference "Root and Butt Rot of Forest Trees," IUFRO Working Party 7.02.01: September 4th-10th 2011, Firenze, Auditorium di S. Apollonia, S. Martino di Castrozza (TN), Palazzo Sass Maor, Italy. Firenze, Italy: Firenze University Press, 2013.
Den vollen Inhalt der Quelle findenE, Flores Hector, Lynch Jonathan P und Eissenstat David, Hrsg. Radical biology: Advances and perspectives on the function of plant roots. Rockville, Md: American Society of Plant Physiologists, 1998.
Den vollen Inhalt der Quelle findenMarsden, Michael A. Sensitivity analyses of the western root disease model to user-specified starting parameters. Fort Collins, Colo: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1992.
Den vollen Inhalt der Quelle findenMorrison, D. J. Control of Armillaria and Phellinus root diseases: 20-year results from the Skimikin stump removal experiment. Victoria, B.C: Pacific Forestry Centre, 1988.
Den vollen Inhalt der Quelle findenMarsden, Michael A. Sensitivity of the western root disease model: Inventory of root disease. Fort Collins, CO: USDA, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1992.
Den vollen Inhalt der Quelle findenJames, Robert L. Evaluation of root diseases of containerized conifer seedlings at the Champion Timberlands Nursery, Plains, Montana. Missoula, Mont: U.S. Dept. of Agriculture, Forest Service, Northern Region, 1988.
Den vollen Inhalt der Quelle findenInternational Conference on Root and Butt Rots of Forest Trees (9th 1997 Carcans-Maubuisson, France). Root and butt rots of forest trees: 9th International Conference on Root and Butt Rots : Carcans-Maubuisson (France), September 1-7, 1997. Herausgegeben von Delatour C, Institut national de la recherche agronomique (France), International Union of Forestry Research Organizations. und Conseil régional d'Aquitaine. Paris: Institut national de la recherche agronomique, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Roots (Botany) Diseases and pests"
Thompson, Anthony Keith, und Ibok Oduro. „Diseases and pests.“ In Yams: botany, production and uses, 76–90. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249279.0006.
Der volle Inhalt der QuelleSipes, B., und A. P. de Matos. „Pests, diseases and weeds.“ In The pineapple: botany, production and uses, 269–94. Wallingford: CABI, 2018. http://dx.doi.org/10.1079/9781786393302.0269.
Der volle Inhalt der Quelle„Cucurbits: Importance, Botany, Uses, Cultivation, Nutrition, Genetic Resources, Diseases, and Pests“. In Handbook of Cucurbits, 43–86. CRC Press, 2016. http://dx.doi.org/10.1201/b19233-12.
Der volle Inhalt der Quelle„Snake Gourd: Taxonomy, Botany, Cultural Practices, Harvesting, Major Diseases, and Pests“. In Handbook of Cucurbits, 553–66. CRC Press, 2016. http://dx.doi.org/10.1201/b19233-50.
Der volle Inhalt der QuelleBahadur, Amar. „Nematodes Diseases of Fruits and Vegetables Crops in India“. In Nematodes - Recent Advances, Management and New Perspectives [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98850.
Der volle Inhalt der QuelleNsiah Frimpong, Benedicta, Samuel Oteng Ampadu, Allen Oppong, Isaac Nunoo und Lydia Brobbey. „Phytophthora Diseases Prevalence, Its Effects and Controls in Ghana“. In Agro-Economic Risks of Phytophthora and an Effective Biocontrol Approach [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99130.
Der volle Inhalt der QuelleMajić, Ivana, Ankica Sarajlić, Emilija Raspudić, Marko Josipović und Gabriella Kanižai Šarić. „Effects of Irrigation and Bioproducts of Microbial Origin on Nematode Community and Mycorrhizal Root Colonization in Soybean“. In Nematodes - Recent Advances, Management and New Perspectives [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99294.
Der volle Inhalt der Quelle