Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rolling body problem“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rolling body problem" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rolling body problem"
Alouges, François, Yacine Chitour und Ruixing Long. „A Motion-Planning Algorithm for the Rolling-Body Problem“. IEEE Transactions on Robotics 26, Nr. 5 (Oktober 2010): 827–36. http://dx.doi.org/10.1109/tro.2010.2053733.
Der volle Inhalt der QuelleChitour, Y., A. Marigo und B. Piccoli. „Quantization of the rolling-body problem with applications to motion planning“. Systems & Control Letters 54, Nr. 10 (Oktober 2005): 999–1013. http://dx.doi.org/10.1016/j.sysconle.2005.02.012.
Der volle Inhalt der QuelleMiftakhova, Almira, Yang-Yuan Chen und Jeng-Haur Horng. „Effect of rolling on the friction coefficient in three-body contact“. Advances in Mechanical Engineering 11, Nr. 8 (August 2019): 168781401987230. http://dx.doi.org/10.1177/1687814019872303.
Der volle Inhalt der QuelleKennedy, Kevin F. „An Approximate Three-Dimensional Metal Flow Analysis for Shape Rolling“. Journal of Engineering for Industry 110, Nr. 3 (01.08.1988): 223–31. http://dx.doi.org/10.1115/1.3187873.
Der volle Inhalt der QuelleKennedy, K. F. „A Method for Analyzing Spread, Elongation and Bulge in Flat Rolling“. Journal of Engineering for Industry 109, Nr. 3 (01.08.1987): 248–56. http://dx.doi.org/10.1115/1.3187126.
Der volle Inhalt der QuelleMoghadasi, S. Reza. „Rolling of a body on a plane or a sphere: a geometric point of view“. Bulletin of the Australian Mathematical Society 70, Nr. 2 (Oktober 2004): 245–56. http://dx.doi.org/10.1017/s0004972700034468.
Der volle Inhalt der QuelleChepchurov, Mihail, Alexander Sumskoy, Julia Zhigulina und Denis Podpryatov. „Distortion identification of the cylindrical part form of technological units“. Automation and modeling in design and management 2022, Nr. 4 (21.12.2022): 29–36. http://dx.doi.org/10.30987/2658-6436-2022-4-29-36.
Der volle Inhalt der QuelleSönmez, Murat. „A Study on the Combined Effect of Axle Friction and Rolling Resistance“. International Journal of Mechanical Engineering Education 31, Nr. 2 (April 2003): 101–7. http://dx.doi.org/10.7227/ijmee.31.2.2.
Der volle Inhalt der QuelleSpector, A. A., und R. C. Batra. „Rolling/Sliding of a Vibrating Elastic Body on an Elastic Substrate“. Journal of Tribology 118, Nr. 1 (01.01.1996): 147–52. http://dx.doi.org/10.1115/1.2837070.
Der volle Inhalt der QuelleSpector, A., und R. C. Batra. „On the Motion of an Elastic Body Rolling/Sliding on an Elastic Substrate“. Journal of Tribology 117, Nr. 2 (01.04.1995): 308–14. http://dx.doi.org/10.1115/1.2831248.
Der volle Inhalt der QuelleDissertationen zum Thema "Rolling body problem"
Manríquez, Peñafiel Ronald. „Local approximation by linear systems and Almost-Riemannian Structures on Lie groups and Continuation method in rolling problem with obstacles“. Electronic Thesis or Diss., université Paris-Saclay, 2022. https://theses.hal.science/tel-03716186.
Der volle Inhalt der QuelleThe aim of this thesis is to study two topics in sub-Riemannian geometry. On the one hand, the local approximation of an almost-Riemannian structure at singular points, and on the other hand, the kinematic system of a 2-dimensional manifold rolling (without twisting or slipping) on the Euclidean plane with forbidden regions. A n-dimensional almost-Riemannian structure can be defined locally by n vector fields satisfying the Lie algebra rank condition, playing the role of an orthonormal frame. The set of points where these vector fields are colinear is called the singular set (Z). At tangency points, i.e., points where the linear span of the vector fields is equal to the tangent space of Z, the nilpotent approximation can be replaced by the solvable one. In this thesis, under generic conditions, we state the order of approximation of the original distance by d ̃ (the distance induced by the solvable approximation), and we prove that d ̃ is closer than the distance induced by the nilpotent approximation to the original distance. Regarding the structure of the approximating system, the Lie algebra generated by this new family of vector fields is finite-dimensional and solvable (in the generic case). Moreover, the solvable approximation is equivalent to a linear ARS on a homogeneous space or a Lie group. On the other hand, nonholonomic systems have attracted the attention of many authors from different disciplines for their varied applications, mainly in robotics. The rolling-body problem (without slipping or spinning) of a 2-dimensional Riemannian manifold on another one can be written as a nonholonomic system. Many methods, algorithms, and techniques have been developed to solve it. A numerical implementation of the Continuation Method to solve the problem in which a convex surface rolls on the Euclidean plane with forbidden regions (or obstacles) without slipping or spinning is performed. Several examples are illustrated
Buchteile zum Thema "Rolling body problem"
Hill, R. „Two-Dimensional Problems Of Steady Motion“. In The Mathematical Theory Of Plasticity, 161–212. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198503675.003.0007.
Der volle Inhalt der QuelleKobayashi, Shiro, Soo-Ik Oh und Taylan Altan. „Preform Design in Metal Forming“. In Metal Forming and the Finite-Element Method. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195044027.003.0018.
Der volle Inhalt der QuelleChambers, Marcie L., John K. Hewitt, Stephanie Schmitz, Robin P. Corley und David W. Fulker. „Height, Weight, and Body Mass Index“. In Infancy to Early Childhood, 292–306. Oxford University PressNew York, NY, 2001. http://dx.doi.org/10.1093/oso/9780195130126.003.0022.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Rolling body problem"
Alouges, Francois, Yacine Chitour und Ruixing Long. „A motion planning algorithm for the rolling-body problem“. In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC 2009). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400393.
Der volle Inhalt der QuelleKurasov, Dmitriy. „KINEMATIC POSSIBILITIES OF "GEARED" CLOSED ROLLING BODY SYSTEMS“. In PROBLEMS OF APPLIED MECHANICS. Bryansk State Technical University, 2020. http://dx.doi.org/10.30987/conferencearticle_5fd1ed039e5272.57017138.
Der volle Inhalt der QuelleSari, O. Taylan, George G. Adams und Sinan Mu¨ftu¨. „The Sliding and Rolling of a Cylinder at the Nano-Scale“. In ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64347.
Der volle Inhalt der QuelleRajendran, Suresh, und C. Guedes Soares. „Numerical Investigation of Parametric Rolling of a Container Ship in Regular and Irregular Waves“. In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-62490.
Der volle Inhalt der QuelleNguyen, Van Duong, Gim Song Soh, Shaohui Foong und Kristin Wood. „Localization of a Miniature Spherical Rolling Robot Using IMU, Odometry and UWB“. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85548.
Der volle Inhalt der QuelleCakdi, Sabri, Scott Cummings und John Punwani. „Heavy Haul Coal Car Wheel Load Environment: Rolling Contact Fatigue Investigation“. In 2015 Joint Rail Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/jrc2015-5640.
Der volle Inhalt der QuelleTrinkle, J. C. „Formulation of Multibody Dynamics as Complementarity Problems“. In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48342.
Der volle Inhalt der QuelleCheung, L. W., K. C. Lau, Flora F. Leung, Donald N. F. Ip, Henry G. H. Chow, Philip W. Y. Chiu und Y. Yam. „Distal Joint Rotation Mechanism for Endoscopic Robot Manipulation“. In The Hamlyn Symposium on Medical Robotics: "MedTech Reimagined". The Hamlyn Centre, Imperial College London London, UK, 2022. http://dx.doi.org/10.31256/hsmr2022.74.
Der volle Inhalt der QuelleVantsevich, V. V., A. D. Zakrevskij und S. V. Kharytonchyk. „Heavy-Duty Truck: Inverse Dynamics and Performance Control“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42659.
Der volle Inhalt der QuelleMurakami, Hidenori, und Takeyuki Ono. „A Variational Derivation of Equations of Motion With Contact Constraints Using SE(3)“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87126.
Der volle Inhalt der Quelle