Auswahl der wissenschaftlichen Literatur zum Thema „Rocks Permeability“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rocks Permeability" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Rocks Permeability":

1

Scott, Samuel W., und Thomas Driesner. „Permeability Changes Resulting from Quartz Precipitation and Dissolution around Upper Crustal Intrusions“. Geofluids 2018 (31.07.2018): 1–19. http://dx.doi.org/10.1155/2018/6957306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
It has long been recognized that quartz precipitation from circulating hydrothermal fluids may reduce porosity and permeability near intrusions. However, the magnitude of permeability changes and potential feedbacks between flow, heat transfer, and quartz precipitation/dissolution remain largely unquantified. Here, we present numerical simulations of fluid convection around upper crustal intrusions which explicitly incorporate the feedback between quartz solubility and rock permeability. As groundwater is heated to ~350°C, silica dissolves from the host rock, increasing porosity and permeability. Further heating to supercritical conditions leads to intensive quartz precipitation and consequent permeability reduction. The initial host rock permeability and porosity are found to be main controls on the magnitude and timescales of permeability changes. While the permeability changes induced by quartz precipitation are moderate in host rocks with a primary porosity ≥ 0.05, quartz precipitation may reduce rock permeability by more than an order of magnitude in host rocks with a primary porosity of 0.025. Zones of quartz precipitation transiently change locations as the intrusion cools, thereby limiting the clogging effect, except for host rocks with low initial porosity. This permeability reduction occurs in timescales of hundreds of years in host rocks with initial high permeability and thousands of years in host rocks with intermediate permeability.
2

Liu, Kouqi, und Mehdi Ostadhassan. „Estimation of the Permeability of Rock Samples Obtained from the Mercury Intrusion Method Using the New Fractal Method“. Fractal and Fractional 6, Nr. 9 (24.08.2022): 463. http://dx.doi.org/10.3390/fractalfract6090463.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Rock permeability, defined as the ability of fluid to flow through the rocks, is one of the most important properties of rock. Many researchers have developed models to predict the permeability of rock from the porosity and pore size based on the mercury intrusion. However, these existing models still have some limitations. In this study, based on data regarding the fractal nature of the mercury intrusion of the rocks, we built a new model to predict the permeability of the rocks. In order to verify the new model, we extracted data regarding different kinds of samples from the literature and estimated the permeability using the new model. The results showed that the model could predict various types of rocks, such as tight sandstone, carbonates, and shale. The comparison of the calculated permeability using the new model is closer to the measured value than the value estimated from the existing models, indicating that the new model is better in predicting the permeability of rock samples.
3

Madiutomo, Nendaryono, Willy Hermawan, Weningsulistri und Madya Pamungkas. „The effect of rock permeability value on groundwater influx in underground coal gasification reactor“. IOP Conference Series: Earth and Environmental Science 882, Nr. 1 (01.11.2021): 012054. http://dx.doi.org/10.1088/1755-1315/882/1/012054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Rock permeability value is one of the most significant rock’s physical properties that affect groundwater influx processes in underground coal gasification (UCG). This value of rock permeability (K), namely the vertical permeability of flanking rocks (Kv) and horizontal permeability of coal (Kh). The purpose of this study was to determine the extent of the influence of the value of rock permeability on the potential of groundwater influx. The effect of rock permeability on groundwater influx into the UCG gasification reactor cavity in the presence of thermal loads and mineral composition content is large and significant to consider. Based on the resistance to heat loads, the type of sandstone lithology is relatively more resistant compared to siltstone and claystone lithology.
4

Cooke, Andy P., Quentin J. Fisher, Emma A. H. Michie und Graham Yielding. „Permeability of carbonate fault rocks: a case study from Malta“. Petroleum Geoscience 26, Nr. 3 (12.08.2019): 418–33. http://dx.doi.org/10.1144/petgeo2019-055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The inherent heterogeneity of carbonate rocks suggests that carbonate-hosted fault zones are also likely to be heterogeneous. Coupled with a lack of host–fault petrophysical relationships, this makes the hydraulic behaviour of carbonate-hosted fault zones difficult to predict. Here we investigate the link between host rock and fault rock porosity, permeability and texture, by presenting data from series of host rock, damage zone and fault rock samples from normally faulted, shallowly buried limestones from Malta. Core plug X-ray tomography indicates that texturally heterogeneous host rocks lead to greater variability in the porosity and permeability of fault rocks. Fault rocks derived from moderate- to high-porosity (>20%) formations experience permeability reductions of up to six orders of magnitude relative to the host; >30% of these fault rocks could act as baffles or barriers to fluid flow over production timescales. Fault rocks derived from lower-porosity (<20%) algal packstones have permeabilities that are lower than their hosts by up to three orders of magnitude, which is unlikely to impact fluid flow on production timescales. The variability of fault rock permeability is controlled by a number of factors, including the initial host rock texture and porosity, the magnitude of strain localization, and the extent of post-deformation diagenetic alteration. Fault displacement has no obvious control over fault rock permeability. The results enable better predictions of fault rock permeability in similar lithotypes and tectonic regimes. This may enable predictions of across-fault fluid flow potential when combined with data on fault zone architecture.
5

Widarsono, Bambang. „IMBIBITION WATER-OIL RELATIVE PERMEABILITY: INTRODUCTION OF WETTABILITY STRENGTH FOR ENHANCING MODEL ROBUSTNESS“. Scientific Contributions Oil and Gas 42, Nr. 1 (08.04.2019): 1–8. http://dx.doi.org/10.29017/scog.42.1.395.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Water-oil relative permeabilty information of hydrocarbon reservoir rocks plays important roles in various modeling activities related to reservoir modeling and production forecast. The imbibition relative permeability scheme - the process of concern in this study affects many dynamic processes in reservoir. Water flooding and water encroachment form aquifer to oil zone in the reservoir are two two examples which representation in reservoir model requires the data. This study uses the standard Corey relative permeability model as a tool to study and model imbibition relative permeability behaviour of some reservoir rocks in Indonesia. Laboratory data from as many as 340 rock samples - sandstones and limestones - of various permeability and wettability from various oil fi elds in Indonesia is used. Activities in the modeling has pointed out the need to introduce two new empirical factors that relate to rock wettability and non- wetting fl ow hindrance to the model. The two factors appear to have signifi cantly improved the ability of the model to agree and match to the measured data. The modeling also produces suggested values of the factors for rock groups based on rock wettability type and strength, as well as on permeability categories. Comparison between modeling results before and after modifi cation has shown signifi cant improvement in validity of output.
6

Winhausen, Lisa, Mohammadreza Jalali und Florian Amann. „The pore pressure oscillation method as a proven tool for determining the hydraulic properties of low-permeability rocks“. Safety of Nuclear Waste Disposal 1 (10.11.2021): 301. http://dx.doi.org/10.5194/sand-1-301-2021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. In the context of selecting and designing a future repository site for nuclear waste, a proper understanding of the host rock's physical behavior is required. One of the fundamental characteristics is the hydraulic diffusivity of the host rock, i.e., the ratio between permeability and storativity. For low-permeability rocks, however, determination of these properties is technically challenging and often time consuming. Among various steady-state and transient methods, the pore pressure oscillation technique has been proven to be an advantageous method for the simultaneous measurement of permeability and storativity for potential host rocks on a laboratory scale. In this contribution, we will introduce the methodological approach and highlight the advantages and disadvantages compared to other methods. Furthermore, we will demonstrate the applicability of this method for clay-rich rocks by presenting our experimental results. Carefully chosen boundary conditions allow us to constrain dependencies of the properties on, e.g., effective stress or bedding orientation with respect to the fluid flow direction. Additionally, this method is practical for measuring the damage-induced changes of permeability and storativity due to differential loading.
7

Lyu, XianZhou, Zenghui Zhao, Xiaojie Wang und Weiming Wang. „Study on the Permeability of Weakly Cemented Sandstones“. Geofluids 2019 (15.01.2019): 1–14. http://dx.doi.org/10.1155/2019/8310128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Fractured rocks are a type of complex media that widely exist in various projects including energy, hydraulic, and underground space engineering, whose permeability properties are a hotspot in current rock mechanics domain. Aiming at investigating the seepage characteristics of the fracture surfaces in different rock strata, uniaxial compressive test and permeability test were performed on single-fracture homogenous and heterogeneous rocks. Specifically, rock’s physical and mechanical parameters were measured in uniaxial tests while the initial width of the single fracture was determined through CT scanning. In combination with test results and the calculation model of the displacement of single-fracture heterogeneous rock under triaxial stress condition, the calculation formula of the permeability coefficient of single-fracture heterogeneous rock was derived. Results show that hydraulic pressure in the fracture can affect the permeability coefficient of the fractured rock. Hydraulic fracturing effect occurred with the increase of hydraulic pressure in the fracture, which then generates slight normal deformations of the rock masses on both two sides of the fracture surface, decreases the contact area in the fracture, and leads to the increases of both fracture width and permeability coefficient. For single-fracture rock, the lithological properties of the rock masses on both two sides of the fracture surface impose significant effects on the permeability coefficient. Under same hydraulic pressure and confining pressure, the permeability coefficient of single-fracture coarse sandstone is greatest, followed by that of single-fracture heterogeneous rock, and finally by single-fracture fine sandstone. Theoretical calculation results agree well with the test results, suggesting that the derived theoretical formula can adequately describe the variation tendencies of permeability coefficient with confining pressure and hydraulic pressure in the fracture.
8

Xu, Tao, und Chun An Tang. „Modeling of Stress-Induced Permeability Evolution and Damage of Rock“. Advanced Materials Research 33-37 (März 2008): 609–16. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Rock permeability is important in civil and geo-hydraulic engineering, the mining and petroleum industries, and in environmental and engineering geology. In this paper, considering the mutual hydro-mechanical response between stress-induced permeability and damage, a coupled mathematical model for solid deformation and gas flow in the coal or rock was established and an attempt is made to investigate the rock permeability evolution, fracture patterns, and flow vectors in rock samples at the scale of usual laboratory samples as well as the relation between permeability and stress induced damage in connection with the complete strain-stress process of loaded rocks. Numerical simulations show that the permeability of rock was not constant, closely related to the state of stress, but varied with the stress and strain states in the rocks. Microcracking, resulting from the concentration of stress on relatively weak rock elements, triggers successive crack initiation and propagation that in turn leads to permeability enhancement. Prior to the peak strength, the permeability decreases with increasing load. A dramatic increase in permeability occurs in the post-peak stress-strain region due to the catastrophic collapse of microstructure in rock. Moreover, the permeability of rock in post-peak stress-strain region is much higher that that of in pre-peak region. Such intensive studies of gas flow in stressed heterogeneous rocks are useful as initial approaches to many engineering problems in mining and petroleum industries.
9

LV, WEIFENG, GUOLIANG YAN, YONGDONG LIU, XUEFENG LIU, DONGXING DU und RONG WANG. „EFFECT OF FRACTAL FRACTURES ON PERMEABILITY IN THREE-DIMENSIONAL DIGITAL ROCKS“. Fractals 27, Nr. 01 (Februar 2019): 1940015. http://dx.doi.org/10.1142/s0218348x19400152.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The fracture has great impact on the flow behavior in fractured reservoirs. Fracture traces are usually self-similar and scale-independent, which makes the fractal theory become a powerful tool to characterize fracture. To obtain three-dimensional (3D) digital rocks reflecting the properties of fractured reservoirs, we first generate discrete fracture networks by stochastic modeling based on the fractal theory. These fracture networks are then added to the existing digital rocks of rock matrixes. We combine two low-permeable cores as rock matrixes with a group of discrete fracture networks with fractal characteristics. Various types of fractured digital rocks are obtained by adjusting different fracture parameters. Pore network models are extracted from the 3D fractured digital rock. Then the permeability is predicted by Darcy law to investigate the impacts of fracture properties to the absolute permeability. The permeability of fractured rock is subject to exponential increases with fracture aperture. The relationship between the permeability and the fractal dimension of fracture centers is exponential, as well as the relationship between permeability and the fractal dimension of fracture lengths.
10

Clauser, C. „Permeability of crystalline rocks“. Eos, Transactions American Geophysical Union 73, Nr. 21 (1992): 233. http://dx.doi.org/10.1029/91eo00190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Rocks Permeability":

1

Wong, Wing-yee. „Permeability studies in rock fractures“. View the Table of Contents & Abstract, 2002. http://sunzi.lib.hku.hk/hkuto/record/B30109334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wong, Wing-yee, und 黃詠儀. „Permeability studies in rock fractures“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B43895013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schmitt, Mayka. „Pore structure characterization of low permeability rocks“. reponame:Repositório Institucional da UFSC, 2014. https://repositorio.ufsc.br/xmlui/handle/123456789/128792.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Florianópolis, 2014.
Made available in DSpace on 2015-02-05T20:21:04Z (GMT). No. of bitstreams: 1 328189.pdf: 16197737 bytes, checksum: ef7484371ab3bfb4817957e38ea6adb5 (MD5) Previous issue date: 2014
Hoje as pesquisas em rochas de baixa permeabilidade (grande tendência no mundo e em breve na indústria petrolífera brasileira) se voltam à escala de poros seja para investigação petrofísica, morfológica, de distribuição de tamanhos de grãos ou poros ou escoamento de fluidos, prática descrita pelos valores de permeabilidade. A avaliação destas propriedades por sua vez, é essencial ao desenvolvimento e exploração de reservas de hidrocarbonetos. No entanto, a determinação de parâmetros do sistema poroso nessas rochas, arenitos de baixa permeabilidade (TGS) e rochas selantes (SR), continua a ser um grande desafio devido à extrema variabilidade de ambientes deposicionais e complexa microestrutura composta por argilas e tamanhos de poros de submícrons a ångströms. Nesta tese empregou-se um conjunto de técnicas experimentais para a caracterização da estrutura porosa de TGS e SR. De tal modo, o trabalho foi dividido em dois tópicos principais: (i) Caracterização do sistema poroso e propriedades petrofísicas em TGS utilizando-se as técnicas de permeabilidade por decaimento de pulso (PDP), NMR de baixo campo, adsorção gasosa N2 (N2GA), porosimetria por intrusão Hg (MICP), nano- e microtomografia de raios X (res. <0,7 µm); (ii) Estudo por espectrometria fotoacústica (PAS) em SR de distintos campos geológicos para a determinação de porosidade e difusividade térmica (TD), de forma a estimular a exploração segura de gás e óleo, o armazenamento de CO2, bem como a caracterização de folhelhos. Para SR os valores de TD variaram entre 0,0167 e 0,0930 (cm2/s) e a porosidade entre 1,42 e 9%; para TGS a caracterização 3D da estrutura porosa forneceu valores de tortuosidade e fator de forma entre 2,19-5,47 e 3,2-8,5. As distribuições de tamanho de poros mostraram-se bimodais nos ensaios MICP, trimodais na multiescala 3D e tetramodais na NMR, enquanto a porosidade pela combinação N2GA e MICP variou entre 1,94 e 11,96% e a permeabilidade PDP de 0,036 a 0,00066 mD. Alguns dos parâmetros microestruturais obtidos em TGS foram correlacionados na estimativa de permeabilidade utilizando-se modelos como Carman-Kozeny (Dullien, 1992) e Coates (1999). O conjunto de técnicas e metodologias aplicado nesta tese mostrou ser ferramenta imprescindível na caracterização de rochas de baixa permeabilidade, uma vez que permitem integrar atributos da rede de poros que influenciam nas macro-propriedades das rochas analisadas.

Abstract : Nowadays, significant research effort in low-permeability rocks (a wide tendency elsewhere and soon in the Brazilian petroleum industry) has been focused on pore-scale petrophysics, morphologies and distributions, as well as fluid flow circulation described by the values of permeability. The evaluation of these properties in turn is essential for the assessment and exploitation of hydrocarbon reserves; however, determining pore system parameters in such rocks as tight gas sandstones (TGS) and seal rocks (SR) remains challenging because of the extreme variability in depositional environments resulting in complex pore structures comprised by clays and length scales from sub-microns to Angstroms. In this work we applied a set of techniques to characterize submicron-pore structures in TGS and SR. Therefore it was divided into two main topics of interest: (i) Characterization of petrophysical properties and pore systems in very low permeability TGS using Pulse-Decay Permeability (PDP), Low Field Nuclear Magnetic Resonance (LFNMR), Nitrogen Gas Adsorption (N2GA), Mercury Intrusion Capillary Pressure (MICP) and Multi-scale 3D X-ray Nano- and MicroCT (down to 0.7 µm resolution) techniques; (ii) Study of Photoacoustic Spectrometry (PAS) for determining thermal diffusivity (TD) and porosity in three seal rocks originating from dissimilar fields as a key issue for safe exploration, storage purposes (CO2 sequestration) and developments in shale characterization. The values obtained for TD were between 0.01667 and 0.09298 (cm2/s) while porosity ranged from 1.42 to 9%. For the analyzed TGS the 3D pore-structure characterization lead to pore tortuosity and shape factors ranges of 2.19-5.47 and 3.2-8.5, respectively, and pore size distributions tended to be bimodal for MICP, trimodal for 3D multi-scale and tetramodal for LFNMR measurements. The porosity values ranged from 1.94 to 11.96% obtained by the combination of N2GA and MICP techniques and permeability from 0.036 to 0.00066 mD by PDP technique. The measured pore-structure parameters were also used to predict empirical permeability in TGS (using e.g. Carman-Kozeny (Dullien, 1992) and Coates (1999) models). The set of applied methods has shown to be a useful tool for the unconventional reservoir characterization since it allows obtaining pore morphological and quantitative parameters which account for the permeability values.
4

Astakhov, Dmitriy Konstantinovich. „Permeability evolution as a result of fluid-rock interaction“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/21693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bernabé, Yves. „Permeability and pore structure of rocks under pressure“. Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/57818.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1986.
Microfiche copy available in Archives and Science
Includes bibliographies.
by Yves Bernabe.
Ph.D.
6

Jozefowicz, R. R. „The post-failure stress-permeability behaviour of coal measure rocks“. Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hyun, Yunjung. „Multiscale anaylses of permeability in porous and fractured media“. Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_321_sip1_w.pdf&type=application/pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schaffer, Andrew 1952. „PERMEABILITY TESTING AND GROUTING OF FRACTURED ROCK“. Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Pereira, Janaina Luiza Lobato. „Permeability prediction from well log data using multiple regression analysis“. Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3368.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Thesis (M.S.)--West Virginia University, 2004.
Title from document title page. Document formatted into pages; contains xiii, 82 p. : ill. (some col.), maps. Vita. Includes abstract. Includes bibliographical references (p. 41).
10

AZEVEDO, FLAVIO DA SILVA. „EXPERIMENTAL STUDY OF THE STRESS INFLUENCE ON PERMEABILITY OF PRODUCING OIL ROCKS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=6697@1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Reservatórios de hidrocarbonetos são sistemas dinâmicos que estão constantemente mudando durante a história da produção (depleção). A produção de fluidos, a partir de reservas de hidrocarbonetos, reduz a poro-pressão do reservatório, podendo levar à compactação das rochas devido ao aumento das tensões efetivas. Por outro lado, a injeção de água em um reservatório pode aumentar a poro-pressão e, com isso, diminuir a tensão efetiva. O conhecimento de mudanças de tensão e poro-pressão é essencial para uma boa gestão do reservatório, porque a alteração da tensão in situ durante a produção pode ter um impacto significante na performance do reservatório, variando a permeabilidade da rocha. O objetivo da atual pesquisa é estudar experimentalmente a variação, a anisotropia e a histerese de permeabilidade de rochas produtoras de petróleo (arenitos) sob variação dos estados de tensão hidrostático e triaxial verdadeiro. Para realização dos ensaios foi utilizado um novo equipamento triaxial verdadeiro, que aplica de forma independente as três tensões principais em corpos de prova cúbicos, atingindo, desta maneira, um estado de tensão mais realista para o estudo das propriedades relevantes das rochas. Os resultados dos ensaios apresentaram evidências que estimativas de produção e de reserva de hidrocarbonetos podem ser significativamente melhoradas, quando a permeabilidade é considerada uma variável dinâmica. A permeabilidade dos arenitos Berea, Rio Bonito e Botucatú se mostrou altamente influenciada, tanto pelo estado de tensão hidrostático quanto pelo triaxial verdadeiro. Contudo, o estado hidrostático apresentou maior influência na permeabilidade.
Hydrocarbons reservoirs are dynamic systems that constantly changes during depletion. The production of fluids from a reservoir often reduces pore pressure such that there is an increase in its effective stresses. This may cause compaction which, in turn, may impact matrix permeability. On the other hand, during water injection on reservoirs, the pore pressure increases and effective stress decreases. An understanding of these changes is of fundamental importance to performance predictions and management of the stress- sensitive reservoirs. The main objectives of this work is to experimentally investigate the stress dependence of rock producing oil permeability, its anisotropy and hysteresis under hydrostatic and true triaxial stress conditions. In the present investigation a new true triaxial equipment, one that is able to apply the three principal boundary stresses independently using cubic samples was utilized. This equipment can apply a realistic stress state to the rock samples for measuring of the relevant properties under stress states that mimic the in situ condition. The experimental results have produced evidence that hydrocarbon production and reserve estimates may significantly improve when permeability is considered as a dynamic variable. Permeability in all three formations (Berea, Rio Bonito and Botucatú sandstones) was shown to be strongly stress-dependent both under a hydrostatic stress state and under a true triaxial stress state. Nevertheless, the effect of stress states on permeability has clearly shown that permeability reduction under true triaxial stresses was less than that under hydrostatic stresses.

Bücher zum Thema "Rocks Permeability":

1

International Association of Hydrogeologists. International Congress. Hydrogeology of rocks of low permeability. Tucson, Ariz: published by a committee of U.S.A. members of the International Association of Hydrogeologists, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lee, Cheng-Haw. Fluid flow in discontinuous rocks. London: Chapman & Hall, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Honarpour, Mehdi. Relative permeability of petroleum reservoirs. Boca Raton, Fla: C.R.C. Press, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Phillips, O. M. Flow and reactions in permeable rocks. Cambridge [England]: Cambridge University Press, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Flint, Lorraine E. Preliminary permeability and water-retention data for nonwelded and bedded tuff samples, Yucca Mountain area, Nye County, Nevada. Denver, Colo: U.S. Geological Survey, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kleeschulte, Michael J. Stratigraphy and vertical hydraulic conductivity of the St. Francois confining unit in the Viburnum Trend and evaluation of the unit in the Viburnum Trend and exploration areas, southeastern Missouri. Rolla, Mo: U.S. Dept. of the Interior, U.S. Geological Survey, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kleeschulte, Michael J. Stratigraphy and vertical hydraulic conductivity of the St. Francois confining unit in townships 25-27 N. and ranges 01-02 W., southeastern Missouri. Rolla, Mo. (1400 Independence Rd., Mail stop 100, Rolla 65401): U.S. Dept. of the Interior, U.S. Geological Survey, 2001.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bierkens, Marc F. P. Complex confining layers: A stochastic analysis of hydraulic properties at various scales. Utrecht, Netherlands: Koninklijk Nederlands Aardrijkskundig Genootschap/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lucia, F. Jerry. Rock fabric, permeability, and log relationships in an upward-shoaling, vuggy carbonate sequence. Austin, Tex: Bureau of Economic Geology, University of Texas at Austin, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lucia, F. Jerry. Rock fabric, permeability, and log relationships in an upward-shoaling, vuggy carbonate sequence. Austin, TX: University of Texas at Austin, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Rocks Permeability":

1

Yang, Shenglai. „Permeability of Reservoir Rocks“. In Fundamentals of Petrophysics, 233–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53529-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Yang, Shenglai. „Permeability of Reservoir Rocks“. In Fundamentals of Petrophysics, 233–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55029-8_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yardley, Bruce. „The permeability of crustal rocks through the metamorphic cycle: an overview“. In Crustal Permeability, 275–84. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Stober, Ingrid, und Kurt Bucher. „Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks“. In Crustal Permeability, 174–88. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cashman, Pat M., und Martin Preene. „Permeability of Soils and Rocks“. In Groundwater Lowering in Construction, 73–92. 3rd edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003050025-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Preisig, Giona, Erik Eberhardt, Valentin Gischig, Vincent Roche, Mirko van der Baan, Benoît Valley, Peter K. Kaiser, Damien Duff und Robert Lowther. „Development of connected permeability in massive crystalline rocks through hydraulic fracture propagation and shearing accompanying fluid injection“. In Crustal Permeability, 335–52. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pepin, Jeff D., Mark Person, Fred Phillips, Shari Kelley, Stacy Timmons, Lara Owens, James Witcher und Carl W. Gable. „Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system“. In Crustal Permeability, 155–73. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch14.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Cabrera S., Daniel, und Fernando Samaniego V. „Experimental Permeability Tensor for Fractured Porous Rocks“. In Experimental Mechanics of Fractured Porous Rocks, 21–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17738-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shmonov, Vyacheslav M., Valentina M. Vitovtova und Irina V. Zarubina. „Permeability of rocks at elevated temperatures and pressures“. In Fluids in the Crust, 285–313. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1226-0_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Baumgartner, Lukas P., Martha L. Gerdes, Mark A. Person und Gregory T. Roselle. „Porosity and Permeability of Carbonate Rocks During Contact Metamorphism“. In Fluid Flow and Transport in Rocks, 83–98. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1533-6_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Rocks Permeability":

1

Laubach, S. E. „Fracture Patterns in Low-Permeability-Sandstone Gas Reservoir Rocks in the Rocky Mountain Region“. In Low Permeability Reservoirs Symposium. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/21853-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Akai, T., Y. Takakuwa, K. Sato und J. M. Wood. „Pressure Dependent Permeability of Tight Rocks“. In SPE Low Perm Symposium. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/180262-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Warpinski, N. R., und L. W. Teufel. „In-Situ Stresses in Low-Permeability, Nonmarine Rocks“. In SPE/DOE Joint Symposium on Low Permeability Reservoirs. Society of Petroleum Engineers, 1987. http://dx.doi.org/10.2118/16402-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jamiolahmady, Mahmoud, Mehran Sohrabi und Shaun Ireland. „Gas Condensate Relative Permeability of Low permeability Rocks: Coupling Versus Inertia“. In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, 2009. http://dx.doi.org/10.2118/120088-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ghosh, Pinaki, Himanshu Sharma und Kishore K. Mohanty. „Chemical Flooding in Low Permeability Carbonate Rocks“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/187274-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Fauzi, U., A. Hördt, F. M. Neubauer und K. Vozoff. „Permeability estimation of rocks using local porosity theory“. In 58th EAEG Meeting. Netherlands: EAGE Publications BV, 1996. http://dx.doi.org/10.3997/2214-4609.201408649.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Müller, T. M., und B. Guervich. „Seismic Signatures of Permeability Fluctuations in Porous Rocks“. In 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.g027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bosl, William J., Jack Dvorkin und Amos Nur. „Lattice‐Boltzmann simulation of permeability in granular rocks“. In SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1886190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ceia, Marco, Simonaria Fidelis, Roseane Missagia, Irineu Lima Neto, Victor Santos und José Agnelo Soares. „Linking permeability and elastic properties in carbonate rocks“. In SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018. http://dx.doi.org/10.1190/segam2018-2993587.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Song, Haofeng, Pinaki Ghosh und Kishore Mohanty. „Transport of Polymers in Low Permeability Carbonate Rocks“. In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206024-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Polymer transport and retention affect oil recovery and economic feasibility of EOR processes. Most studies on polymer transport have focused on sandstones with permeabilities (k) higher than 200 mD. A limited number of studies were conducted in carbonates with k less than 100 mD and very few in the presence of residual oil. In this work, transport of four polymers with different molecular weights (MW) and functional groups are studied in Edwards Yellow outcrop cores (k&lt;50 mD) with and without residual oil saturation (Sor). The retention of polymers was estimated by both the material balance method and the double-bank method. The polymer concentration was measured by both the total organic carbon (TOC) analyzer and the capillary tube rheology. Partially hydrolyzed acrylamide (HPAM) polymers exhibited high retention (&gt; 150 μg/g), inaccessible pore volume (IPV) greater than 7%, and high residual resistance factor (&gt;9). A sulfonated polyacrylamide (AN132), showed low retentions (&lt; 20 μg/g) and low IPV. The residual resistance factor (RRF) of AN132 in the water-saturated rock was less than 2, indicating little blocking of pore throats in these tight rocks. The retention and RRF of the AN132 polymer increased in the presence of residual oil saturation due to partial blocking of the smaller pore throats available for polymer propagation in an oil-wet core.

Berichte der Organisationen zum Thema "Rocks Permeability":

1

Schlueter, E. M. Predicting the permeability of sedimentary rocks from microstructure. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/70737.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lekhov, A. V. Studies of permeability changes and mass transfer in carbonate rocks. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/760313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Maloney, D., K. Doggett und A. Brinkmeyer. Special core analyses and relative permeability measurement on Almond formation reservoir rocks. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/6735203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Maloney, D., K. Doggett und A. Brinkmeyer. Special core analyses and relative permeability measurement on Almond formation reservoir rocks. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/10131819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhu, Wenlu, und J. Brian Evans. Collaborative Research: Evolution of Pore Structure and Permeability of Rocks Under Hydrothermal Conditions. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/965902.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Evans, Brian, und Yves Bernabe. EVOLUTION OF PORE STRUCTURE AND PERMEABILITY OF ROCKS UNDER HYDROTHERMAL CONDITIONS (Final Report). Office of Scientific and Technical Information (OSTI), Mai 2019. http://dx.doi.org/10.2172/1515828.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sklarew, D. S. Organic solvent alteration of hydraulic properties of sedimentary rocks of low permeability: a review. Office of Scientific and Technical Information (OSTI), Mai 1985. http://dx.doi.org/10.2172/5758569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kanehiro, B. Y., C. H. Lai und S. H. Stow. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks. Office of Scientific and Technical Information (OSTI), Mai 1987. http://dx.doi.org/10.2172/6133996.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Maloney, D. Reservoir condition special core analyses and relative permeability measurements on Almond formation and Fontainebleu sandstone rocks. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10108864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Johnson, B. Mechanical and transport properties of rocks at high temperatures and pressures. Task II. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Final report. Office of Scientific and Technical Information (OSTI), November 1985. http://dx.doi.org/10.2172/6252349.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie