Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rocks Permeability“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rocks Permeability" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rocks Permeability"
Scott, Samuel W., und Thomas Driesner. „Permeability Changes Resulting from Quartz Precipitation and Dissolution around Upper Crustal Intrusions“. Geofluids 2018 (31.07.2018): 1–19. http://dx.doi.org/10.1155/2018/6957306.
Der volle Inhalt der QuelleLiu, Kouqi, und Mehdi Ostadhassan. „Estimation of the Permeability of Rock Samples Obtained from the Mercury Intrusion Method Using the New Fractal Method“. Fractal and Fractional 6, Nr. 9 (24.08.2022): 463. http://dx.doi.org/10.3390/fractalfract6090463.
Der volle Inhalt der QuelleMadiutomo, Nendaryono, Willy Hermawan, Weningsulistri und Madya Pamungkas. „The effect of rock permeability value on groundwater influx in underground coal gasification reactor“. IOP Conference Series: Earth and Environmental Science 882, Nr. 1 (01.11.2021): 012054. http://dx.doi.org/10.1088/1755-1315/882/1/012054.
Der volle Inhalt der QuelleCooke, Andy P., Quentin J. Fisher, Emma A. H. Michie und Graham Yielding. „Permeability of carbonate fault rocks: a case study from Malta“. Petroleum Geoscience 26, Nr. 3 (12.08.2019): 418–33. http://dx.doi.org/10.1144/petgeo2019-055.
Der volle Inhalt der QuelleWidarsono, Bambang. „IMBIBITION WATER-OIL RELATIVE PERMEABILITY: INTRODUCTION OF WETTABILITY STRENGTH FOR ENHANCING MODEL ROBUSTNESS“. Scientific Contributions Oil and Gas 42, Nr. 1 (08.04.2019): 1–8. http://dx.doi.org/10.29017/scog.42.1.395.
Der volle Inhalt der QuelleWinhausen, Lisa, Mohammadreza Jalali und Florian Amann. „The pore pressure oscillation method as a proven tool for determining the hydraulic properties of low-permeability rocks“. Safety of Nuclear Waste Disposal 1 (10.11.2021): 301. http://dx.doi.org/10.5194/sand-1-301-2021.
Der volle Inhalt der QuelleLyu, XianZhou, Zenghui Zhao, Xiaojie Wang und Weiming Wang. „Study on the Permeability of Weakly Cemented Sandstones“. Geofluids 2019 (15.01.2019): 1–14. http://dx.doi.org/10.1155/2019/8310128.
Der volle Inhalt der QuelleXu, Tao, und Chun An Tang. „Modeling of Stress-Induced Permeability Evolution and Damage of Rock“. Advanced Materials Research 33-37 (März 2008): 609–16. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.609.
Der volle Inhalt der QuelleLV, WEIFENG, GUOLIANG YAN, YONGDONG LIU, XUEFENG LIU, DONGXING DU und RONG WANG. „EFFECT OF FRACTAL FRACTURES ON PERMEABILITY IN THREE-DIMENSIONAL DIGITAL ROCKS“. Fractals 27, Nr. 01 (Februar 2019): 1940015. http://dx.doi.org/10.1142/s0218348x19400152.
Der volle Inhalt der QuelleClauser, C. „Permeability of crystalline rocks“. Eos, Transactions American Geophysical Union 73, Nr. 21 (1992): 233. http://dx.doi.org/10.1029/91eo00190.
Der volle Inhalt der QuelleDissertationen zum Thema "Rocks Permeability"
Wong, Wing-yee. „Permeability studies in rock fractures“. View the Table of Contents & Abstract, 2002. http://sunzi.lib.hku.hk/hkuto/record/B30109334.
Der volle Inhalt der QuelleWong, Wing-yee, und 黃詠儀. „Permeability studies in rock fractures“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B43895013.
Der volle Inhalt der QuelleSchmitt, Mayka. „Pore structure characterization of low permeability rocks“. reponame:Repositório Institucional da UFSC, 2014. https://repositorio.ufsc.br/xmlui/handle/123456789/128792.
Der volle Inhalt der QuelleMade available in DSpace on 2015-02-05T20:21:04Z (GMT). No. of bitstreams: 1 328189.pdf: 16197737 bytes, checksum: ef7484371ab3bfb4817957e38ea6adb5 (MD5) Previous issue date: 2014
Hoje as pesquisas em rochas de baixa permeabilidade (grande tendência no mundo e em breve na indústria petrolífera brasileira) se voltam à escala de poros seja para investigação petrofísica, morfológica, de distribuição de tamanhos de grãos ou poros ou escoamento de fluidos, prática descrita pelos valores de permeabilidade. A avaliação destas propriedades por sua vez, é essencial ao desenvolvimento e exploração de reservas de hidrocarbonetos. No entanto, a determinação de parâmetros do sistema poroso nessas rochas, arenitos de baixa permeabilidade (TGS) e rochas selantes (SR), continua a ser um grande desafio devido à extrema variabilidade de ambientes deposicionais e complexa microestrutura composta por argilas e tamanhos de poros de submícrons a ångströms. Nesta tese empregou-se um conjunto de técnicas experimentais para a caracterização da estrutura porosa de TGS e SR. De tal modo, o trabalho foi dividido em dois tópicos principais: (i) Caracterização do sistema poroso e propriedades petrofísicas em TGS utilizando-se as técnicas de permeabilidade por decaimento de pulso (PDP), NMR de baixo campo, adsorção gasosa N2 (N2GA), porosimetria por intrusão Hg (MICP), nano- e microtomografia de raios X (res. <0,7 µm); (ii) Estudo por espectrometria fotoacústica (PAS) em SR de distintos campos geológicos para a determinação de porosidade e difusividade térmica (TD), de forma a estimular a exploração segura de gás e óleo, o armazenamento de CO2, bem como a caracterização de folhelhos. Para SR os valores de TD variaram entre 0,0167 e 0,0930 (cm2/s) e a porosidade entre 1,42 e 9%; para TGS a caracterização 3D da estrutura porosa forneceu valores de tortuosidade e fator de forma entre 2,19-5,47 e 3,2-8,5. As distribuições de tamanho de poros mostraram-se bimodais nos ensaios MICP, trimodais na multiescala 3D e tetramodais na NMR, enquanto a porosidade pela combinação N2GA e MICP variou entre 1,94 e 11,96% e a permeabilidade PDP de 0,036 a 0,00066 mD. Alguns dos parâmetros microestruturais obtidos em TGS foram correlacionados na estimativa de permeabilidade utilizando-se modelos como Carman-Kozeny (Dullien, 1992) e Coates (1999). O conjunto de técnicas e metodologias aplicado nesta tese mostrou ser ferramenta imprescindível na caracterização de rochas de baixa permeabilidade, uma vez que permitem integrar atributos da rede de poros que influenciam nas macro-propriedades das rochas analisadas.
Abstract : Nowadays, significant research effort in low-permeability rocks (a wide tendency elsewhere and soon in the Brazilian petroleum industry) has been focused on pore-scale petrophysics, morphologies and distributions, as well as fluid flow circulation described by the values of permeability. The evaluation of these properties in turn is essential for the assessment and exploitation of hydrocarbon reserves; however, determining pore system parameters in such rocks as tight gas sandstones (TGS) and seal rocks (SR) remains challenging because of the extreme variability in depositional environments resulting in complex pore structures comprised by clays and length scales from sub-microns to Angstroms. In this work we applied a set of techniques to characterize submicron-pore structures in TGS and SR. Therefore it was divided into two main topics of interest: (i) Characterization of petrophysical properties and pore systems in very low permeability TGS using Pulse-Decay Permeability (PDP), Low Field Nuclear Magnetic Resonance (LFNMR), Nitrogen Gas Adsorption (N2GA), Mercury Intrusion Capillary Pressure (MICP) and Multi-scale 3D X-ray Nano- and MicroCT (down to 0.7 µm resolution) techniques; (ii) Study of Photoacoustic Spectrometry (PAS) for determining thermal diffusivity (TD) and porosity in three seal rocks originating from dissimilar fields as a key issue for safe exploration, storage purposes (CO2 sequestration) and developments in shale characterization. The values obtained for TD were between 0.01667 and 0.09298 (cm2/s) while porosity ranged from 1.42 to 9%. For the analyzed TGS the 3D pore-structure characterization lead to pore tortuosity and shape factors ranges of 2.19-5.47 and 3.2-8.5, respectively, and pore size distributions tended to be bimodal for MICP, trimodal for 3D multi-scale and tetramodal for LFNMR measurements. The porosity values ranged from 1.94 to 11.96% obtained by the combination of N2GA and MICP techniques and permeability from 0.036 to 0.00066 mD by PDP technique. The measured pore-structure parameters were also used to predict empirical permeability in TGS (using e.g. Carman-Kozeny (Dullien, 1992) and Coates (1999) models). The set of applied methods has shown to be a useful tool for the unconventional reservoir characterization since it allows obtaining pore morphological and quantitative parameters which account for the permeability values.
Astakhov, Dmitriy Konstantinovich. „Permeability evolution as a result of fluid-rock interaction“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/21693.
Der volle Inhalt der QuelleBernabé, Yves. „Permeability and pore structure of rocks under pressure“. Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/57818.
Der volle Inhalt der QuelleMicrofiche copy available in Archives and Science
Includes bibliographies.
by Yves Bernabe.
Ph.D.
Jozefowicz, R. R. „The post-failure stress-permeability behaviour of coal measure rocks“. Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339717.
Der volle Inhalt der QuelleHyun, Yunjung. „Multiscale anaylses of permeability in porous and fractured media“. Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_321_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleSchaffer, Andrew 1952. „PERMEABILITY TESTING AND GROUTING OF FRACTURED ROCK“. Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275420.
Der volle Inhalt der QuellePereira, Janaina Luiza Lobato. „Permeability prediction from well log data using multiple regression analysis“. Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3368.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains xiii, 82 p. : ill. (some col.), maps. Vita. Includes abstract. Includes bibliographical references (p. 41).
AZEVEDO, FLAVIO DA SILVA. „EXPERIMENTAL STUDY OF THE STRESS INFLUENCE ON PERMEABILITY OF PRODUCING OIL ROCKS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=6697@1.
Der volle Inhalt der QuelleReservatórios de hidrocarbonetos são sistemas dinâmicos que estão constantemente mudando durante a história da produção (depleção). A produção de fluidos, a partir de reservas de hidrocarbonetos, reduz a poro-pressão do reservatório, podendo levar à compactação das rochas devido ao aumento das tensões efetivas. Por outro lado, a injeção de água em um reservatório pode aumentar a poro-pressão e, com isso, diminuir a tensão efetiva. O conhecimento de mudanças de tensão e poro-pressão é essencial para uma boa gestão do reservatório, porque a alteração da tensão in situ durante a produção pode ter um impacto significante na performance do reservatório, variando a permeabilidade da rocha. O objetivo da atual pesquisa é estudar experimentalmente a variação, a anisotropia e a histerese de permeabilidade de rochas produtoras de petróleo (arenitos) sob variação dos estados de tensão hidrostático e triaxial verdadeiro. Para realização dos ensaios foi utilizado um novo equipamento triaxial verdadeiro, que aplica de forma independente as três tensões principais em corpos de prova cúbicos, atingindo, desta maneira, um estado de tensão mais realista para o estudo das propriedades relevantes das rochas. Os resultados dos ensaios apresentaram evidências que estimativas de produção e de reserva de hidrocarbonetos podem ser significativamente melhoradas, quando a permeabilidade é considerada uma variável dinâmica. A permeabilidade dos arenitos Berea, Rio Bonito e Botucatú se mostrou altamente influenciada, tanto pelo estado de tensão hidrostático quanto pelo triaxial verdadeiro. Contudo, o estado hidrostático apresentou maior influência na permeabilidade.
Hydrocarbons reservoirs are dynamic systems that constantly changes during depletion. The production of fluids from a reservoir often reduces pore pressure such that there is an increase in its effective stresses. This may cause compaction which, in turn, may impact matrix permeability. On the other hand, during water injection on reservoirs, the pore pressure increases and effective stress decreases. An understanding of these changes is of fundamental importance to performance predictions and management of the stress- sensitive reservoirs. The main objectives of this work is to experimentally investigate the stress dependence of rock producing oil permeability, its anisotropy and hysteresis under hydrostatic and true triaxial stress conditions. In the present investigation a new true triaxial equipment, one that is able to apply the three principal boundary stresses independently using cubic samples was utilized. This equipment can apply a realistic stress state to the rock samples for measuring of the relevant properties under stress states that mimic the in situ condition. The experimental results have produced evidence that hydrocarbon production and reserve estimates may significantly improve when permeability is considered as a dynamic variable. Permeability in all three formations (Berea, Rio Bonito and Botucatú sandstones) was shown to be strongly stress-dependent both under a hydrostatic stress state and under a true triaxial stress state. Nevertheless, the effect of stress states on permeability has clearly shown that permeability reduction under true triaxial stresses was less than that under hydrostatic stresses.
Bücher zum Thema "Rocks Permeability"
University of Arizona. Dept. of Hydrology and Water Resources und United States. Dept. of Energy, Hrsg. Hydrogeology of rocks of low permeability. Tucson, Ariz: published by a committee of U.S.A. members of the International Association of Hydrogeologists, 1985.
Den vollen Inhalt der Quelle findenLee, Cheng-Haw. Fluid flow in discontinuous rocks. London: Chapman & Hall, 1993.
Den vollen Inhalt der Quelle findenLeonard, Koederitz, und Harvey A. Herbert, Hrsg. Relative permeability of petroleum reservoirs. Boca Raton, Fla: C.R.C. Press, 1986.
Den vollen Inhalt der Quelle findenFlow and reactions in permeable rocks. Cambridge [England]: Cambridge University Press, 1991.
Den vollen Inhalt der Quelle findenFlint, Lorraine E. Preliminary permeability and water-retention data for nonwelded and bedded tuff samples, Yucca Mountain area, Nye County, Nevada. Denver, Colo: U.S. Geological Survey, 1990.
Den vollen Inhalt der Quelle findenKleeschulte, Michael J. Stratigraphy and vertical hydraulic conductivity of the St. Francois confining unit in the Viburnum Trend and evaluation of the unit in the Viburnum Trend and exploration areas, southeastern Missouri. Rolla, Mo: U.S. Dept. of the Interior, U.S. Geological Survey, 2003.
Den vollen Inhalt der Quelle findenKleeschulte, Michael J. Stratigraphy and vertical hydraulic conductivity of the St. Francois confining unit in townships 25-27 N. and ranges 01-02 W., southeastern Missouri. Rolla, Mo. (1400 Independence Rd., Mail stop 100, Rolla 65401): U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Den vollen Inhalt der Quelle findenBierkens, Marc F. P. Complex confining layers: A stochastic analysis of hydraulic properties at various scales. Utrecht, Netherlands: Koninklijk Nederlands Aardrijkskundig Genootschap/Faculteit Ruimtelijke Wetenschappen Universiteit Utrecht, 1994.
Den vollen Inhalt der Quelle findenLucia, F. Jerry. Rock fabric, permeability, and log relationships in an upward-shoaling, vuggy carbonate sequence. Austin, Tex: Bureau of Economic Geology, University of Texas at Austin, 1987.
Den vollen Inhalt der Quelle findenLucia, F. Jerry. Rock fabric, permeability, and log relationships in an upward-shoaling, vuggy carbonate sequence. Austin, TX: University of Texas at Austin, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Rocks Permeability"
Yang, Shenglai. „Permeability of Reservoir Rocks“. In Fundamentals of Petrophysics, 233–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53529-5_6.
Der volle Inhalt der QuelleYang, Shenglai. „Permeability of Reservoir Rocks“. In Fundamentals of Petrophysics, 233–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55029-8_6.
Der volle Inhalt der QuelleYardley, Bruce. „The permeability of crustal rocks through the metamorphic cycle: an overview“. In Crustal Permeability, 275–84. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch22.
Der volle Inhalt der QuelleStober, Ingrid, und Kurt Bucher. „Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks“. In Crustal Permeability, 174–88. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch15.
Der volle Inhalt der QuelleCashman, Pat M., und Martin Preene. „Permeability of Soils and Rocks“. In Groundwater Lowering in Construction, 73–92. 3rd edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003050025-5.
Der volle Inhalt der QuellePreisig, Giona, Erik Eberhardt, Valentin Gischig, Vincent Roche, Mirko van der Baan, Benoît Valley, Peter K. Kaiser, Damien Duff und Robert Lowther. „Development of connected permeability in massive crystalline rocks through hydraulic fracture propagation and shearing accompanying fluid injection“. In Crustal Permeability, 335–52. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch26.
Der volle Inhalt der QuellePepin, Jeff D., Mark Person, Fred Phillips, Shari Kelley, Stacy Timmons, Lara Owens, James Witcher und Carl W. Gable. „Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system“. In Crustal Permeability, 155–73. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119166573.ch14.
Der volle Inhalt der QuelleCabrera S., Daniel, und Fernando Samaniego V. „Experimental Permeability Tensor for Fractured Porous Rocks“. In Experimental Mechanics of Fractured Porous Rocks, 21–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17738-5_3.
Der volle Inhalt der QuelleShmonov, Vyacheslav M., Valentina M. Vitovtova und Irina V. Zarubina. „Permeability of rocks at elevated temperatures and pressures“. In Fluids in the Crust, 285–313. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1226-0_11.
Der volle Inhalt der QuelleBaumgartner, Lukas P., Martha L. Gerdes, Mark A. Person und Gregory T. Roselle. „Porosity and Permeability of Carbonate Rocks During Contact Metamorphism“. In Fluid Flow and Transport in Rocks, 83–98. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1533-6_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Rocks Permeability"
Laubach, S. E. „Fracture Patterns in Low-Permeability-Sandstone Gas Reservoir Rocks in the Rocky Mountain Region“. In Low Permeability Reservoirs Symposium. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/21853-ms.
Der volle Inhalt der QuelleAkai, T., Y. Takakuwa, K. Sato und J. M. Wood. „Pressure Dependent Permeability of Tight Rocks“. In SPE Low Perm Symposium. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/180262-ms.
Der volle Inhalt der QuelleWarpinski, N. R., und L. W. Teufel. „In-Situ Stresses in Low-Permeability, Nonmarine Rocks“. In SPE/DOE Joint Symposium on Low Permeability Reservoirs. Society of Petroleum Engineers, 1987. http://dx.doi.org/10.2118/16402-ms.
Der volle Inhalt der QuelleJamiolahmady, Mahmoud, Mehran Sohrabi und Shaun Ireland. „Gas Condensate Relative Permeability of Low permeability Rocks: Coupling Versus Inertia“. In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, 2009. http://dx.doi.org/10.2118/120088-ms.
Der volle Inhalt der QuelleGhosh, Pinaki, Himanshu Sharma und Kishore K. Mohanty. „Chemical Flooding in Low Permeability Carbonate Rocks“. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/187274-ms.
Der volle Inhalt der QuelleFauzi, U., A. Hördt, F. M. Neubauer und K. Vozoff. „Permeability estimation of rocks using local porosity theory“. In 58th EAEG Meeting. Netherlands: EAGE Publications BV, 1996. http://dx.doi.org/10.3997/2214-4609.201408649.
Der volle Inhalt der QuelleMüller, T. M., und B. Guervich. „Seismic Signatures of Permeability Fluctuations in Porous Rocks“. In 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.g027.
Der volle Inhalt der QuelleBosl, William J., Jack Dvorkin und Amos Nur. „Lattice‐Boltzmann simulation of permeability in granular rocks“. In SEG Technical Program Expanded Abstracts 1997. Society of Exploration Geophysicists, 1997. http://dx.doi.org/10.1190/1.1886190.
Der volle Inhalt der QuelleCeia, Marco, Simonaria Fidelis, Roseane Missagia, Irineu Lima Neto, Victor Santos und José Agnelo Soares. „Linking permeability and elastic properties in carbonate rocks“. In SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018. http://dx.doi.org/10.1190/segam2018-2993587.1.
Der volle Inhalt der QuelleSong, Haofeng, Pinaki Ghosh und Kishore Mohanty. „Transport of Polymers in Low Permeability Carbonate Rocks“. In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206024-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Rocks Permeability"
Schlueter, E. M. Predicting the permeability of sedimentary rocks from microstructure. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/70737.
Der volle Inhalt der QuelleLekhov, A. V. Studies of permeability changes and mass transfer in carbonate rocks. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/760313.
Der volle Inhalt der QuelleMaloney, D., K. Doggett und A. Brinkmeyer. Special core analyses and relative permeability measurement on Almond formation reservoir rocks. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/6735203.
Der volle Inhalt der QuelleMaloney, D., K. Doggett und A. Brinkmeyer. Special core analyses and relative permeability measurement on Almond formation reservoir rocks. Office of Scientific and Technical Information (OSTI), Februar 1993. http://dx.doi.org/10.2172/10131819.
Der volle Inhalt der QuelleZhu, Wenlu, und J. Brian Evans. Collaborative Research: Evolution of Pore Structure and Permeability of Rocks Under Hydrothermal Conditions. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/965902.
Der volle Inhalt der QuelleEvans, Brian, und Yves Bernabe. EVOLUTION OF PORE STRUCTURE AND PERMEABILITY OF ROCKS UNDER HYDROTHERMAL CONDITIONS (Final Report). Office of Scientific and Technical Information (OSTI), Mai 2019. http://dx.doi.org/10.2172/1515828.
Der volle Inhalt der QuelleSklarew, D. S. Organic solvent alteration of hydraulic properties of sedimentary rocks of low permeability: a review. Office of Scientific and Technical Information (OSTI), Mai 1985. http://dx.doi.org/10.2172/5758569.
Der volle Inhalt der QuelleKanehiro, B. Y., C. H. Lai und S. H. Stow. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks. Office of Scientific and Technical Information (OSTI), Mai 1987. http://dx.doi.org/10.2172/6133996.
Der volle Inhalt der QuelleMaloney, D. Reservoir condition special core analyses and relative permeability measurements on Almond formation and Fontainebleu sandstone rocks. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10108864.
Der volle Inhalt der QuelleJohnson, B. Mechanical and transport properties of rocks at high temperatures and pressures. Task II. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Final report. Office of Scientific and Technical Information (OSTI), November 1985. http://dx.doi.org/10.2172/6252349.
Der volle Inhalt der Quelle