Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Robots de terrain“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Robots de terrain" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Robots de terrain"
Žák, Marek, Jaroslav Rozman und František V. Zbořil. „Design and Control of 7-DOF Omni-directional Hexapod Robot“. Open Computer Science 11, Nr. 1 (17.12.2020): 80–89. http://dx.doi.org/10.1515/comp-2020-0189.
Der volle Inhalt der QuelleZHANG, HE, RUI WU, CHANGLE LI, XIZHE ZANG, YANHE ZHU, HONGZHE JIN, XUEHE ZHANG und JIE ZHAO. „ADAPTIVE MOTION PLANNING FOR HITCR-II HEXAPOD ROBOT“. Journal of Mechanics in Medicine and Biology 17, Nr. 07 (November 2017): 1740040. http://dx.doi.org/10.1142/s0219519417400401.
Der volle Inhalt der QuelleHao, Qian, Zhaoba Wang, Junzheng Wang und Guangrong Chen. „Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots“. Sensors 20, Nr. 17 (31.08.2020): 4911. http://dx.doi.org/10.3390/s20174911.
Der volle Inhalt der QuelleCruz Ulloa, Christyan, Lourdes Sánchez, Jaime Del Cerro und Antonio Barrientos. „Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation“. Biomimetics 8, Nr. 3 (03.07.2023): 289. http://dx.doi.org/10.3390/biomimetics8030289.
Der volle Inhalt der QuelleHashimoto, Kenji, Yusuke Sugahara, Hun-Ok Lim und Atsuo Takanishi. „Biped Landing Pattern Modification Method and Walking Experiments in Outdoor Environment“. Journal of Robotics and Mechatronics 20, Nr. 5 (20.10.2008): 775–84. http://dx.doi.org/10.20965/jrm.2008.p0775.
Der volle Inhalt der QuelleChen, Yang, Yao Wu, Wei Zeng und Shaoyi Du. „Kinematics Model Estimation of 4W Skid-Steering Mobile Robots Using Visual Terrain Classification“. Journal of Robotics 2023 (11.10.2023): 1–12. http://dx.doi.org/10.1155/2023/1632563.
Der volle Inhalt der QuellePecie, Robert Florian, Mihai Olimpiu Tătar und Călin Rusu. „Studies on mobile robots for all types of terrain“. MATEC Web of Conferences 343 (2021): 08015. http://dx.doi.org/10.1051/matecconf/202134308015.
Der volle Inhalt der QuelleHuang, Han, Yu Feng, Xiong Yang, Liu Yang und Yajing Shen. „An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability“. Micromachines 13, Nr. 10 (22.09.2022): 1578. http://dx.doi.org/10.3390/mi13101578.
Der volle Inhalt der QuelleLi, Daxian, Wu Wei und Zhiying Qiu. „Combined Reinforcement Learning and CPG Algorithm to Generate Terrain-Adaptive Gait of Hexapod Robots“. Actuators 12, Nr. 4 (03.04.2023): 157. http://dx.doi.org/10.3390/act12040157.
Der volle Inhalt der QuelleLi, Xu, Songyuan Zhang, Haitao Zhou, Haibo Feng und Yili Fu. „Locomotion Adaption for Hydraulic Humanoid Wheel-Legged Robots Over Rough Terrains“. International Journal of Humanoid Robotics 18, Nr. 01 (Februar 2021): 2150001. http://dx.doi.org/10.1142/s0219843621500018.
Der volle Inhalt der QuelleDissertationen zum Thema "Robots de terrain"
Iagnemma, Karl Dubowsky S. „Mobile robots in rough terrain : estimation, motion planning, and control with application to planetary rovers /“. Berlin ; New York : Springer, 2004. http://www.loc.gov/catdir/toc/fy0606/2004106986.html.
Der volle Inhalt der QuelleCaurin, Glauco Augusto de Paula. „Control of walking robots on natural terrain /“. [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10898.
Der volle Inhalt der QuelleFAHMI, AHMED MOHAMED SHAMEL BAHAAELDEEN. „On Terrain-Aware Locomotion for Legged Robots“. Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1045132.
Der volle Inhalt der QuelleHäselich, Marcel [Verfasser]. „Markov random field terrain classification for autonomous robots in unstructured terrain / Marcel Häselich“. Koblenz : Universitätsbibliothek Koblenz, 2015. http://d-nb.info/1064986544/34.
Der volle Inhalt der QuelleGuedes, Magno Edgar da Silva. „Vision based obstacle detection for all-terrain robots“. Master's thesis, FCT - UNL, 2009. http://hdl.handle.net/10362/3650.
Der volle Inhalt der QuelleThis dissertation presents a solution to the problem of obstacle detection in all-terrain environments,with particular interest for mobile robots equipped with a stereo vision sensor. Despite the advantages of vision, over other kind of sensors, such as low cost, light weight and reduced energetic footprint, its usage still presents a series of challenges. These include the difficulty in dealing with the considerable amount of generated data, and the robustness required to manage high levels of noise. Such problems can be diminished by making hard assumptions, like considering that the terrain in front of the robot is planar. Although computation can be considerably saved, such simplifications are not necessarily acceptable in more complex environments, where the terrain may be considerably uneven. This dissertation proposes to extend a well known obstacle detector that relaxes the aforementioned planar terrain assumption, thus rendering it more adequate for unstructured environments. The proposed extensions involve: (1) the introduction of a visual saliency mechanism to focus the detection in regions most likely to contain obstacles; (2) voting filters to diminish sensibility to noise; and (3) the fusion of the detector with a complementary method to create a hybrid solution, and thus, more robust. Experimental results obtained with demanding all-terrain images show that, with the proposed extensions, an increment in terms of robustness and computational efficiency over the original algorithm is observed
Alves, Nelson Miguel Rosa. „Vision based trail detection for all-terrain robots“. Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/5015.
Der volle Inhalt der QuelleEsta dissertação propõe um modelo para detecção de trilhos baseado na observação de que estes são estruturas salientes no campo visual do robô. Devido à complexidade dos ambientes naturais, uma aplicação directa dos modelos tradicionais de saliência visual não é suficientemente robusta para prever a localização dos trilhos. Tal como noutras tarefas de detecção, a robustez pode ser aumentada através da modulação da computação da saliência com conhecimento implícito acerca das características visuais (e.g. cor) que permitem uma melhor representação do objecto a encontrar. Esta dissertação propõe o uso da estrutura global do objecto, sendo esta uma característica mais estável e previsível para o caso de trilhos naturais. Esta nova componente de conhecimento implícito é especificada em termos de regras de percepção activa, que controlam o comportamento de agentes simples que se comportam em conjunto para computar o mapa de saliência da imagem de entrada. Para o propósito de acumulação de informação histórica acerca da localização do trilho é utilizado um campo neuronal dinâmico com compensação de movimento. Resultados experimentais num conjunto de dados vasto revelam a habilidade do modelo de produzir uma taxa de sucesso de 91% a 20Hz. O modelo demonstra ser robusto em situações onde outros detectores falhariam, tal como quando o trilho não emerge da parte de baixo da imagem, ou quando se encontra consideravelmente interrompido.
Elanjimattathil, Vijayan Aravind. „Dynamic Locomotion of Quadrupedal Robots over Rough Terrain“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240409.
Der volle Inhalt der QuelleTidigare forskning har gjort det möjligt att fyrfotade robotar kan rö- ra sig med hjälp av det ZMP-baserade rörelseoptimeringsramverket på platt terräng med olika gångartsmönster. Nya utmaningar före- kommer med förflyttning över grov terräng såsom planering av säk- ra fotfäste för roboten, säkerställning av kinematiskt stabilitet under rörelse, undvikande av fotglidning på grov terräng, och så vidare. I det här verket är terränguppfattning integrerad i det ZMP-baserade rörelseoptimeringsverket så att robotar kan utföra dynamisk rörelse över grov terräng. I första steget utökar vi fotfästeoptimeringsram- verket för att använda bearbetad information om terrängen med syf- tet att undvika planeringen av osäkra fotfästeplaceringar under för- flyttning över grov terräng. För att undvika kinematiska överträdel- ser under förflyttning över grov terräng introducerar vi ytterligare begränsningar till det ZMP-baserade rörelseoptimeringsramverket för att lösa ut kinematiskt rimliga rörelseplaner i realtid. Vi introducerar icke-linjära kinematiska begränsningar till det existerande icke-linjära ZMP-baserade rörelseoptimeringsramverket och löser ett sekventiellt kvadratiskt programmeringsproblem (SQP problem) för att få rimli- ga rörelseplaner. Med syftet att undvika fotkontaktglidning släpper vi den approximerade terrängnormalen och använder den mätta ter- rängnormalen vid fotkontaktläge för att beräkna friktionspolygonbe- gränsningarna. De föreslagna algoritmerna testas i simulering samt på hårdvara med dynamiska gångarter för att bekräfta denna metods ef- fektivitet att tillåta fyrfotade robotar att flytta sig över grov terräng på ett säkert sätt. Algoritmernas beräkningsperiod och prestanda analy- serades i olika fall och redovisades som en del av detta examensarbete.
Vijaykumar, R. „Motion planning for legged locomotion systems on uneven terrain /“. The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487335992904418.
Der volle Inhalt der QuelleWeiss, Christian. „Self-Localization and terrain classification for mobile outdoor robots /“. München : Verl. Dr. Hut, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017311174&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleWard, Christopher Charles. „Terrain sensing and estimation for dynamic outdoor mobile robots“. Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42419.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 120-125).
In many applications, mobile robots are required to travel on outdoor terrain at high speed. Compared to traditional low-speed, laboratory-based robots, outdoor scenarios pose increased perception and mobility challenges which must be considered to achieve high performance. Additionally, high-speed driving produces dynamic robot-terrain interactions which are normally negligible in low speed driving. This thesis presents algorithms for estimating wheel slip and detecting robot immobilization on outdoor terrain, and for estimating traversed terrain profile and classifying terrain type. Both sets of algorithms utilize common onboard sensors. Two methods are presented for robot immobilization detection. The first method utilizes a dynamic vehicle model to estimate robot velocity and explicitly estimate longitudinal wheel slip. The vehicle model utilizes a novel simplified tire traction/braking force model in addition to estimating external resistive disturbance forces acting on the robot. The dynamic model is combined with sensor measurements in an extended Kalman filter framework. A preliminary algorithm for adapting the tire model parameters is presented. The second, model-free method takes a signal recognition-based approach to analyze inertial measurements to detect robot immobilization. Both approaches are experimentally validated on a robotic platform traveling on a variety of outdoor terrains. Two detector fusion techniques are proposed and experimentally validated which combine multiple detectors to increase detection speed and accuracy. An algorithm is presented to classify outdoor terrain for high-speed mobile robots using a suspension mounted accelerometer. The algorithm utilizes a dynamic vehicle model to estimate the terrain profile and classifies the terrain based on spatial frequency components of the estimated profile. The classification algorithm is validated using experimental results collected with a commercial automobile driving in real-world conditions.
by Christopher Charles Ward.
S.M.
Bücher zum Thema "Robots de terrain"
Iagnemma, Karl, und Steven Dubowsky. Mobile Robots in Rough Terrain. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b94718.
Der volle Inhalt der QuelleLamon, Pierre. 3D-position tracking and control for all-terrain robots. Berlin: Springer, 2008.
Den vollen Inhalt der Quelle findenLamon, Pierre. 3D-Position Tracking and Control for All-Terrain Robots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78287-2.
Der volle Inhalt der QuelleIagnemma, Karl. Mobile robots in rough terrain: Estimation, motion planning, and control with application to planetary rovers. Berlin: Springer, 2010.
Den vollen Inhalt der Quelle findenKwak, Se-Hung. Rule-based motion coordination for the Adaptive Suspension Vehicle on ternary-type terrain. Monterey, Calif: Naval Postgraduate School, 1990.
Den vollen Inhalt der Quelle findenKudriashov, Andrii, Tomasz Buratowski, Mariusz Giergiel und Piotr Małka. SLAM Techniques Application for Mobile Robot in Rough Terrain. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48981-6.
Der volle Inhalt der QuelleRickenbach, Mark Douglas. Correction of inertial navigation system drift errors for an autonomous land vehicle using optical radar terrain data. Monterey, Calif: Naval Postgraduate School, 1987.
Den vollen Inhalt der Quelle findenGurshtein, Ksenya, und Simonyi, Hrsg. Experimental Cinemas in State Socialist Eastern Europe. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789462982994.
Der volle Inhalt der QuelleA general model of legged locomotion on natural terrain. Boston: Kluwer Academic Publishers, 1992.
Den vollen Inhalt der Quelle findenLamon, Pierre. 3D-Position Tracking and Control for All-Terrain Robots. Springer, 2008.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Robots de terrain"
Hert, Susan, Sanjay Tiwari und Vladimir Lumelsky. „A Terrain-Covering Algorithm for an AUV“. In Underwater Robots, 17–45. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1419-6_2.
Der volle Inhalt der QuelleSvennebring, Jonas, und Sven Koenig. „Towards Building Terrain-Covering Ant Robots“. In Ant Algorithms, 202–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45724-0_17.
Der volle Inhalt der QuelleBhatti, Jawaad, Pejman Iravani, Andrew R. Plummer und M. Necip Sahinkaya. „Towards Running Robots for Discontinuous Terrain“. In Advances in Autonomous Robotics, 461–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32527-4_59.
Der volle Inhalt der QuelleChocron, Olivier. „Evolving Modular Robots for Rough Terrain Exploration“. In Mobile Robots: The Evolutionary Approach, 23–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49720-2_2.
Der volle Inhalt der QuelleKennedy, Brett, Avi Okon, Hrand Aghazarian, Mircea Badescu, Xiaoqi Bao, Yoseph Bar-Cohen, Zensheu Chang et al. „Lemur IIb: a Robotic System for Steep Terrain Access“. In Climbing and Walking Robots, 1077–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26415-9_129.
Der volle Inhalt der QuelleZhu, Xiaorui, Youngshik Kim, Mark Andrew Minor und Chunxin Qiu. „Terrain-Inclination–Based Localization and Mapping“. In Autonomous Mobile Robots in Unknown Outdoor Environments, 187–204. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. |: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151496-9.
Der volle Inhalt der QuelleNabulsi, S., M. Armada und H. Montes. „Multiple Terrain Adaptation Approach Using Ultrasonic Sensors for Legged Robots“. In Climbing and Walking Robots, 391–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-26415-9_47.
Der volle Inhalt der QuellePalis, Rusin, Schumucker, Schneider und Zavgorodniy. „Legged Robot with Articulated Body in Locomotion Over Complex Terrain“. In Climbing and Walking Robots, 321–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-29461-9_30.
Der volle Inhalt der QuelleFries, Terrence P. „Evolutionary Navigation of Autonomous Robots Under Varying Terrain Conditions“. In Mobile Robots: The Evolutionary Approach, 47–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49720-2_3.
Der volle Inhalt der QuelleMohseni-Vahed, Shahram, und Yun Qin. „Effect of Different Terrain Parameters on Walking“. In Advances in Reconfigurable Mechanisms and Robots I, 389–97. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4141-9_35.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Robots de terrain"
Werner, Lennart, Pedro Proença, Andreas Nüchter und Roland Brockers. „Covariance Based Terrain Mapping for Autonomous Mobile Robots“. In 2024 IEEE International Conference on Robotics and Automation (ICRA), 11768–73. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610010.
Der volle Inhalt der QuelleDuPont, Edmond M., Rodney G. Roberts, Majura F. Selekwa, Carl A. Moore und Emmanual G. Collins. „Online Terrain Classification for Mobile Robots“. In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81659.
Der volle Inhalt der QuelleArunkumar, V., Devika Rajasekar und N. Aishwarya. „A Review Paper on Mobile Robots Applications in Search and Rescue Operations“. In International Conference on Future Technologies in Manufacturing, Automation, Design and Energy. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-ip2l3t.
Der volle Inhalt der QuelleHOEPFLINGER, MARK A., C. DAVID REMY, MARCO HUTTER, STEFAN HAAG und ROLAND SIEGWART. „HAPTIC TERRAIN CLASSIFICATION ON NATURAL TERRAINS FOR LEGGED ROBOTS“. In Proceedings of the 13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814329927_0097.
Der volle Inhalt der QuelleMedeiros, Vivian Suzano, und Marco Antonio Meggiolaro. „Trajectory Optimization for Hybrid Wheeled-Legged Robots in Challenging Terrain“. In VIII Workshop de Teses e Dissertações em Robótica/Concurso de Teses e Dissertações em Robótica. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wtdr_ctdr.2020.14960.
Der volle Inhalt der QuelleLiu, Yufei, Lei Jiang, Chong Tian, Boyang Xing, Zhirui Wang, Bo Su, Tong Yan, Liang Ding und Haibo Gao. „Foothold Selection Considering Constraint and Slippage Evaluation for Legged Robots“. In 11th Asia-Pacific Regional Conference of the ISTVS. International Society for Terrain-Vehicle Systems, 2022. http://dx.doi.org/10.56884/zees3819.
Der volle Inhalt der QuelleXing, Boyang, Bo Su, Lei Jiang, Yufei Liu, Zhirui Wang, Jianxin Zhao und Tianqi Qiu. „Perceptive Locomotion of Legged Robot Coupling Model Predictive Control and Terrain Mapping“. In 11th Asia-Pacific Regional Conference of the ISTVS. International Society for Terrain-Vehicle Systems, 2022. http://dx.doi.org/10.56884/kpgl5403.
Der volle Inhalt der QuelleKumar, Prashant, Wael Saab und Pinhas Ben-Tzvi. „Design of a Multi-Directional Hybrid-Locomotion Modular Robot With Feedforward Stability Control“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67436.
Der volle Inhalt der QuelleNoh, Seonghoon, und Aaron Dollar. „Design of an Underactuated Legged Robot With Prismatic Legs for Passive Adaptability to Terrain“. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98118.
Der volle Inhalt der QuelleRay, Laura E., Devin Brande, John Murphy und James Joslin. „Cooperative Control of Autonomous Mobile Robots in Unknown Terrain“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13435.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Robots de terrain"
Celmins, Aivars. Terrain Exploration by Autonomous Robots. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada383123.
Der volle Inhalt der QuelleChoset, Howie. Towards Snakes and Snake Robots on Grannular Terrain. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada582230.
Der volle Inhalt der QuelleFuentes, Anthony, Michelle Michaels und Sally Shoop. Methodology for the analysis of geospatial and vehicle datasets in the R language. Cold Regions Research and Engineering Laboratory (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42422.
Der volle Inhalt der QuelleWhittaker, William. High performance robotic traverse of desert terrain. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/919198.
Der volle Inhalt der QuelleCelmins, Aivars. Multimap Procedures for Robot Route Finding in Open Terrain. Fort Belvoir, VA: Defense Technical Information Center, Februar 1999. http://dx.doi.org/10.21236/ada361084.
Der volle Inhalt der QuelleBeer, Randall D. A Cockroach-Like Hexapod Robot for Natural Terrain Locomotion. Fort Belvoir, VA: Defense Technical Information Center, Juni 1997. http://dx.doi.org/10.21236/ada326911.
Der volle Inhalt der QuelleBeer, Randall D., Roger Quinn, Roy Ritzmann und Hillel Chiel. A Cockroach-Like Hexapod Robot for Natural Terrain Locomotion. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1997. http://dx.doi.org/10.21236/ada333320.
Der volle Inhalt der QuelleUdengaard, Martin, und Karl Iagnemma. Design Of An Omnidirectional Mobile Robot For Rough Terrain. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada510606.
Der volle Inhalt der QuelleBeer, Randall, Roger Quinn, Roy Ritzmann und Hillel Chiel. A Cockroach-Like Hexapod Robot for Natural Terrain Locomotion. Fort Belvoir, VA: Defense Technical Information Center, Juni 1998. http://dx.doi.org/10.21236/ada347557.
Der volle Inhalt der QuelleBeer, Randall D. A Cockroach-Like Hexapod Robot for Natural Terrain Locomotion. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1998. http://dx.doi.org/10.21236/ada358415.
Der volle Inhalt der Quelle