Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Robotics in medicine“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Robotics in medicine" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Robotics in medicine"
Pausic, Vesna, Grigorije Jovanovic und Svetlana Simic. „Robotics in physical medicine and neurorehabilitation“. Medical review 74, Nr. 1-2 (2021): 50–53. http://dx.doi.org/10.2298/mpns2102050p.
Der volle Inhalt der QuelleYamato, Masayuki, Ryo Takagi, Makoto Kondo, Daisuke Murakami, Takeshi Ohki, Hidekazu Sekine, Tatsuya Shimizu et al. „Grand Espoir: Robotics in Regenerative Medicine“. Journal of Robotics and Mechatronics 19, Nr. 5 (20.10.2007): 500–505. http://dx.doi.org/10.20965/jrm.2007.p0500.
Der volle Inhalt der QuelleMosoyan, M. S., und D. A. Fedorov. „Modern robotics in medicine“. Translational Medicine 7, Nr. 5 (27.11.2020): 91–108. http://dx.doi.org/10.18705/2311-4495-2020-7-5-91-108.
Der volle Inhalt der QuelleStasevych, Maryna, und Viktor Zvarych. „Innovative Robotic Technologies and Artificial Intelligence in Pharmacy and Medicine: Paving the Way for the Future of Health Care—A Review“. Big Data and Cognitive Computing 7, Nr. 3 (30.08.2023): 147. http://dx.doi.org/10.3390/bdcc7030147.
Der volle Inhalt der QuelleSouza, Chris de. „Robotics in Medicine“. International Journal of Head and Neck Surgery 4, Nr. 2 (2013): 0. http://dx.doi.org/10.5005/ijhns-4-2-v.
Der volle Inhalt der QuelleBarrientos, Antonio, und Jaime del Cerro. „Robotics in medicine“. Medicina Clínica (English Edition) 152, Nr. 12 (Juni 2019): 493–94. http://dx.doi.org/10.1016/j.medcle.2019.02.023.
Der volle Inhalt der QuelleBravo, Raquel, und Antonio M. Lacy. „Medicine and robotics“. Medicina Clínica (English Edition) 145, Nr. 11 (Dezember 2015): 493–95. http://dx.doi.org/10.1016/j.medcle.2016.04.009.
Der volle Inhalt der QuelleDoarn, Charles R., und Ronald C. Merrell. „Robotics in Medicine“. Telemedicine and e-Health 21, Nr. 9 (September 2015): 695–96. http://dx.doi.org/10.1089/tmj.2015.29002.crd.
Der volle Inhalt der QuelleChawla, Suhani. „ADVANCEMENT OF ROBOTICS IN HEALTHCARE“. International Journal of Social Science and Economic Research 07, Nr. 12 (2022): 3936–52. http://dx.doi.org/10.46609/ijsser.2022.v07i12.006.
Der volle Inhalt der QuellePetrescu, Relly Victoria V., Raffaella Aversa, Antonio Apicella und Florian Ion T. Petrescu. „Future Medicine Services Robotics“. American Journal of Engineering and Applied Sciences 9, Nr. 4 (01.04.2016): 1062–87. http://dx.doi.org/10.3844/ajeassp.2016.1062.1087.
Der volle Inhalt der QuelleDissertationen zum Thema "Robotics in medicine"
Ajibade, Olaseni. „Forward to the present: a discussion of robotics in medicine“. Thesis, Boston University, 2012. https://hdl.handle.net/2144/12261.
Der volle Inhalt der QuelleIntroduction: Mankind has long been fascinated with automatons in all their many forms. Machines now have applications in virtually every aspect of life and are changing the face of modern medicine. This thesis reviews briefly reviews the long and complicated history of machines in medicine and how they have shaped and continue to mold clinical practice. Methods: Sources were gathered from multiple databases. Primarily, PubMed, Springerlink, and Science Direct. Printed texts were also consulted as well as news articles. Images compiled for this article are either the work of the author otherwise cited. Data Synthesis: This history of robots in modern medicine is perhaps best conceived as beginning with the surgical arts. The perennial problems of surgery have always been bleeding, pain, and infection. Over the years, applications of robotics have served to enhance the capabilities of modern surgeons while minimizing the amount of trauma the patient endures during the procedure. The newest frontier in robotics is set to be perhaps nominally invasive. The creation of nanorobots allows physicians to monitor and treat patients at the cellular and molecular level. Conclusion: The rise of robotics in medicine has significant and far reaching impact on the wider social world. It dramatically alters economics, education and our relationship with energy resources. Further it forces medicine and humanity in general to redefine our role on the planet and consider the very nature of what makes us human. The future of medical robotics is perhaps the world of Asimov's dreams but also his nightmares.
Idsoe, Tore, University of Western Sydney, of Science Technology and Environment College und School of Engineering and Industrial Design. „Teleoperated system for visual monitoring of surgery“. THESIS_CSTE_EID_Idsoe_T.xml, 2002. http://handle.uws.edu.au:8081/1959.7/396.
Der volle Inhalt der QuelleMaster of Engineering (Hons)
Brooks, Douglas A. „Towards quantifying upper-arm rehabilitation metrics for children through interaction with a humanoid robot“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48970.
Der volle Inhalt der QuelleSicotte, Doreen A. „Implementation of a Staff Education Project for a Robotics Education Program in the Operating Room“. ScholarWorks, 2019. https://scholarworks.waldenu.edu/dissertations/7337.
Der volle Inhalt der QuelleKodandaramaiah, Suhasa Bangalore. „Robotics for in vivo whole cell patch clamping“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51932.
Der volle Inhalt der QuelleChristiane, Peter-John. „Development of a minimally invasive robotic surgical manipulator /“. Link to the online version, 2008. http://hdl.handle.net/10019/2249.
Der volle Inhalt der QuelleIdsoe, Tore. „Teleoperated system for visual monitoring of surgery“. Thesis, View thesis View thesis, 2002. http://handle.uws.edu.au:8081/1959.7/396.
Der volle Inhalt der QuelleJacob, Gary. „Quantifying regional left ventricular function using spatio-temporal tracking techniques“. Thesis, University of Oxford, 1999. http://ora.ox.ac.uk/objects/uuid:051f5820-e6fb-4757-8669-b464fb050db9.
Der volle Inhalt der QuelleChristiane, Peter-John. „Development of a minimally invasive robotic surgical manipulator“. Thesis, Stellenbosch : Stellenbosch University, 2009. http://hdl.handle.net/10019.1/4497.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Minimal invasive surgery (MIS) enables surgeons to operate through a few small incisions made in the patient’s body. Through these incisions, long rigid instruments are inserted into the body and manipulated to perform the necessary surgical tasks. Conventional instruments, however, are constrained by having only five degrees of freedom (DOF), as well as having scaled and mirrored movements, thereby limiting the surgeon’s dexterity. Surgeons are also deprived of depth perception and hand-eye coordination due to only having two-dimensional visual feedback. Surgical robotics attempt to alleviate these drawbacks by increasing dexterity, eliminating the fulcrum effect and providing the surgeon with three-dimensional visualisation. This reduces the risks to the patient as well as to the surgeon. However, existing MIS systems are extremely expensive and bulky in operating rooms, preventing their more widespread adoption. In this thesis, a new, inexpensive seven-DOF primary slave manipulator (PSM) is presented. The four-DOF wrist is actuated through a tendon mechanism driven by five 12 VDC motors. A repeatability study on the wrist’s joint position was done and showed a standard deviation of 0.38 degrees. A strength test was also done and demonstrated that the manipulator is able to resist a 10 N opposing tip force and is capable of a theoretical gripping force of 15 N.
AFRIKAANSE OPSOMMING: Minimale indringende chirurgie (MIC) maak dit vir chirurge moontlik om operasies uit te voer deur ’n paar klein insnydings wat op die pasiënt se liggaam gemaak word. Deur hierdie insnydings word lang onbuigsame instrumente in die liggaam ingesit en gemanipuleer om die nodige chirurgiese take uit te voer. Konvensionele instrumente is egter beperk vanweë die feit dat hulle net vyf vryheidsgrade het, asook afgeskaalde bewegings en spieëlbewegings, en gevolglik die chirurg se handvaardigheid beperk. Chirurge word ook ontneem van dieptewaarneming en hand-oog-koördinasie, want hulle is beperk tot tweedimensionele visuele terugvoer. Chirurgiese robotika poog om hierdie nadele aan te spreek deur handvaardigheid te vermeerder, die hefboomeffek uit te skakel en die chirurg driedimensionele visualisering te bied. Dit verminder die risiko’s vir die pasiënt én vir die chirurg. Bestaande MIC-stelsels is egter uiters duur en neem baie plek op in teaters, wat verhoed dat hulle op ’n groter skaal gebruik word. In hierdie tesis word ’n nuwe, goedkoop sewevryheidsgrade- primêre slaafmanipuleerder (PSM) voorgelê. Die viervryheidsgrade-pols word beweeg deur ’n tendonmeganisme wat aangedryf word deur vyf 12 VDC-motors. ’n Herhaalbaarheidstudie is op die pols se gewrigsposisie gedoen, wat ’n standaardafwyking van 0.38 grade aangetoon het. ’n Sterktetoets is ook gedoen en het gewys dat die manipuleerder in staat is om ’n 10 N-teenkantelkrag te weerstaan en dat dit oor ’n teoretiese greepsterkte van 15 N beskik.
Tholey, Gregory Desai Jaydev Prataprai. „A teleoperative haptic feedback framework for computer-aided minimally invasive surgery /“. Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1314.
Der volle Inhalt der QuelleBücher zum Thema "Robotics in medicine"
Steve, Parker. Robots in science and medicine. Mankato, Minn: Smart Apple Media, 2011.
Den vollen Inhalt der Quelle finden1932-, Webster John G., Hrsg. Tactile sensors for robotics and medicine. New York: Wiley, 1988.
Den vollen Inhalt der Quelle findenAyache, Nicholas, Hrsg. Computer Vision, Virtual Reality and Robotics in Medicine. Berlin/Heidelberg: Springer-Verlag, 1995. http://dx.doi.org/10.1007/bfb0034926.
Der volle Inhalt der QuelleAyache, Nicholas, Hrsg. Computer Vision, Virtual Reality and Robotics in Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-540-49197-2.
Der volle Inhalt der QuelleL, Pons José, Hrsg. Wearable robots: Biomechatronic exoskeletons. Hoboken: Wiley, 2008.
Den vollen Inhalt der Quelle findenL, Pons José, Hrsg. Wearable robots: Biomechatronic exoskeletons. Hoboken: Wiley, 2008.
Den vollen Inhalt der Quelle findenL, Pons José, Hrsg. Wearable robots: Biomechatronic exoskeletons. Hoboken: Wiley, 2008.
Den vollen Inhalt der Quelle findenNikos, Katevas, Hrsg. Mobile robotics in healthcare. Amsterdam: IOS Press, 2001.
Den vollen Inhalt der Quelle findenLiu, Yunhui, und Dong Sun. Biologically inspired robotics. Boca Raton, FL: Taylor & Francis/CRC Press, 2011.
Den vollen Inhalt der Quelle findenJ, Kost Gerald, und Welsh Judith R. N, Hrsg. Handbook of clinical automation, robotics, and optimization. New York: Wiley, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Robotics in medicine"
Moccia, Sara, und Elena De Momi. „AIM in Medical Robotics“. In Artificial Intelligence in Medicine, 1–9. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58080-3_64-1.
Der volle Inhalt der QuelleTukra, Samyakh, Niklas Lidströmer, Hutan Ashrafian und Stamatia Giannarou. „AI in Surgical Robotics“. In Artificial Intelligence in Medicine, 1–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58080-3_323-1.
Der volle Inhalt der QuelleMoccia, Sara, und Elena De Momi. „AIM in Medical Robotics“. In Artificial Intelligence in Medicine, 825–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-64573-1_64.
Der volle Inhalt der QuelleTukra, Samyakh, Niklas Lidströmer, Hutan Ashrafian und Stamatia Gianarrou. „AI in Surgical Robotics“. In Artificial Intelligence in Medicine, 835–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-64573-1_323.
Der volle Inhalt der QuelleLyer, Stefan, Pascal Blersch, Christian Huber, Rainer Tietze und Christoph Alexiou. „Digitalization and (Nano)Robotics in Nanomedicine“. In Digital Medicine, 217–38. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003386070-12.
Der volle Inhalt der QuelleZou, Meiyuan, Qingchuan Xu, Jianfeng Bian, Dingfeng Chen, Wenzheng Chi und Lining Sun. „An Efficient Medicine Identification and Delivery System Based on Mobile Manipulation Robot“. In Social Robotics, 417–26. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24667-8_37.
Der volle Inhalt der QuelleErnst, Erwin, und Klaus-Peter Adlassnig. „Robotics in Medicine: A Brief Survey“. In Medical Informatics Europe 1991, 1032–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-93503-9_185.
Der volle Inhalt der QuelleHarding, William C. B., Neil Petroff und Brittany Partridge. „Wearable Technology and Robotics for a Mobile World“. In Mobile Medicine, 13–37. New York: Productivity Press, 2021. http://dx.doi.org/10.4324/9781003220473-3.
Der volle Inhalt der QuelleArkhipov, Maksim, Aleksey Leskov, Vadim Golovin, Yuriy Gercik und Liudmila Kocherevskaya. „Prospects of Robotics Development for Restorative Medicine“. In Advances in Intelligent Systems and Computing, 499–506. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49058-8_54.
Der volle Inhalt der QuelleDíaz, José Antonio, und M. Rosario Hilde Sánchez Morales. „The Future of Smart Domestic Environments: The Triad of Robotics, Medicine and Biotechnology“. In The Robotics Divide, 117–35. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5358-0_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Robotics in medicine"
Kuznetsov, D. N., und V. I. Syryamkin. „Robotics in medicine“. In NEW OPERATIONAL TECHNOLOGIES (NEWOT’2015): Proceedings of the 5th International Scientific Conference «New Operational Technologies». AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4936037.
Der volle Inhalt der Quelle„TT haptics and robotics in medicine“. In 2018 15th International Workshop on Advanced Motion Control (AMC). IEEE, 2018. http://dx.doi.org/10.1109/amc.2019.8371078.
Der volle Inhalt der QuelleTaylor, Russell H. „Medical robotics and computer-integrated interventional medicine“. In SPIE Medical Imaging, herausgegeben von David R. Holmes III und Kenneth H. Wong. SPIE, 2012. http://dx.doi.org/10.1117/12.916500.
Der volle Inhalt der QuellePathiraja, M. A., und W. A. S. Wijesinghe. „IoT-Based Smart Medicine Dispenser“. In 2024 International Conference on Image Processing and Robotics (ICIPRoB). IEEE, 2024. http://dx.doi.org/10.1109/iciprob62548.2024.10543674.
Der volle Inhalt der QuelleSimion, Luminita, Paul Botez und Florin Zugun-Eloae. „Robotics and Automation in Regenerative Medicine for Musculoskeletal Applications“. In 2009 Advanced Technologies for Enhanced Quality of Life (AT-EQUAL). IEEE, 2009. http://dx.doi.org/10.1109/at-equal.2009.20.
Der volle Inhalt der QuelleMcKinney, Brooks, Will McKinney, Shivanand Pattanshetti und Seok Chang Ryu. „Feasibility Study of In Vivo Robotic Plasma Medicine Devices“. In 2019 International Symposium on Medical Robotics (ISMR). IEEE, 2019. http://dx.doi.org/10.1109/ismr.2019.8710189.
Der volle Inhalt der QuelleJin, Haiyang, Zhen Teng, Yucheng He, Qi Chen, Ruiqiang Wang und Ying Hu. „Medicine bottle recognition based on machine vision and deep learning in intravenous medicine dispensing robot*“. In 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2022. http://dx.doi.org/10.1109/rcar54675.2022.9872280.
Der volle Inhalt der QuelleHeng, P. A. „Virtual human and its application in medicine“. In 2005 IEEE International Conference on Robotics and Biomimetics - ROBIO. IEEE, 2005. http://dx.doi.org/10.1109/robio.2005.246384.
Der volle Inhalt der QuelleV, Vishnu, C. M. Maheshan und H. Prasanna Kumar. „Automated Medicine Delivery System in Hospitals“. In 2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS). IEEE, 2024. http://dx.doi.org/10.1109/icc-robins60238.2024.10533974.
Der volle Inhalt der QuelleIkeda, Seiichi, Fumihito Arai, Toshio Fukuda, Hiroyuki Oura und Makoto Negoro. „Patient-Specific Blood Vessel Scaffold for Regenerative Medicine“. In 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/robot.2007.363601.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Robotics in medicine"
Touchette, Daniel. Telepharmacy Robotic Medicine Delivery Unit TRMDU" Assessment". Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada601311.
Der volle Inhalt der Quelle