Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Robot-Robot interaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Robot-Robot interaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Robot-Robot interaction"
Lee, Heejin. „A Human-Robot Interaction Entertainment Pet Robot“. Journal of Korean Institute of Intelligent Systems 24, Nr. 2 (25.04.2014): 179–85. http://dx.doi.org/10.5391/jkiis.2014.24.2.179.
Der volle Inhalt der QuelleMitsunaga, N., C. Smith, T. Kanda, H. Ishiguro und N. Hagita. „Adapting Robot Behavior for Human--Robot Interaction“. IEEE Transactions on Robotics 24, Nr. 4 (August 2008): 911–16. http://dx.doi.org/10.1109/tro.2008.926867.
Der volle Inhalt der QuelleLai, Yujun, Gavin Paul, Yunduan Cui und Takamitsu Matsubara. „User intent estimation during robot learning using physical human robot interaction primitives“. Autonomous Robots 46, Nr. 2 (15.01.2022): 421–36. http://dx.doi.org/10.1007/s10514-021-10030-9.
Der volle Inhalt der QuelleTakamatsu, Jun. „Human-Robot Interaction“. Journal of the Robotics Society of Japan 37, Nr. 4 (2019): 293–96. http://dx.doi.org/10.7210/jrsj.37.293.
Der volle Inhalt der QuelleJia, Yunyi, Biao Zhang, Miao Li, Brady King und Ali Meghdari. „Human-Robot Interaction“. Journal of Robotics 2018 (01.10.2018): 1–2. http://dx.doi.org/10.1155/2018/3879547.
Der volle Inhalt der QuelleMurphy, Robin, Tatsuya Nomura, Aude Billard und Jennifer Burke. „Human–Robot Interaction“. IEEE Robotics & Automation Magazine 17, Nr. 2 (Juni 2010): 85–89. http://dx.doi.org/10.1109/mra.2010.936953.
Der volle Inhalt der QuelleSethumadhavan, Arathi. „Human-Robot Interaction“. Ergonomics in Design: The Quarterly of Human Factors Applications 20, Nr. 3 (Juli 2012): 27–28. http://dx.doi.org/10.1177/1064804612449796.
Der volle Inhalt der QuelleSheridan, Thomas B. „Human–Robot Interaction“. Human Factors: The Journal of the Human Factors and Ergonomics Society 58, Nr. 4 (20.04.2016): 525–32. http://dx.doi.org/10.1177/0018720816644364.
Der volle Inhalt der QuellePearson, Yvette. „Child-Robot Interaction“. American Scientist 108, Nr. 1 (2020): 16. http://dx.doi.org/10.1511/2020.108.1.16.
Der volle Inhalt der QuelleJones, Keith S., und Elizabeth A. Schmidlin. „Human-Robot Interaction“. Reviews of Human Factors and Ergonomics 7, Nr. 1 (25.08.2011): 100–148. http://dx.doi.org/10.1177/1557234x11410388.
Der volle Inhalt der QuelleDissertationen zum Thema "Robot-Robot interaction"
Akan, Batu. „Human Robot Interaction Solutions for Intuitive Industrial Robot Programming“. Licentiate thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-14315.
Der volle Inhalt der Quellerobot colleague project
Ali, Muhammad. „Contribution to decisional human-robot interaction: towards collaborative robot companions“. Phd thesis, INSA de Toulouse, 2012. http://tel.archives-ouvertes.fr/tel-00719684.
Der volle Inhalt der QuelleAli, Muhammad. „Contributions to decisional human-robot interaction : towards collaborative robot companions“. Thesis, Toulouse, INSA, 2012. http://www.theses.fr/2012ISAT0003/document.
Der volle Inhalt der QuelleHuman Robot Interaction is entering into the interesting phase where the relationship with a robot is envisioned more as one of companionship with the human partner than a mere master-slave relationship. For this to become a reality, the robot needs to understand human behavior and not only react appropriately but also be socially proactive. A Companion Robot will also need to collaborate with the human in his daily life and will require a reasoning mechanism to manage thecollaboration and also handle the uncertainty in the human intention to engage and collaborate. In this work, we will identify key elements of such interaction in the context of a collaborative activity, with special focus on how humans successfully collaborate to achieve a joint action. We will show application of these elements in a robotic system to enrich its social human robot interaction aspect of decision making. In this respect, we provide a contribution to managing robot high-level goals and proactive behavior and a description of a coactivity decision model for collaborative human robot task. Also, a HRI user study demonstrates the importance of timing a verbal communication in a proactive human robot joint action
Alili, Samir. „Interaction décisionnelle Homme-Robot : planification de tâche pour un robot interactif en environnement humain“. Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-01068811.
Der volle Inhalt der QuelleAlili, Samir. „Interaction décisionnelle homme-robot : planification de tâche pour un robot interactif en environnement humain“. Phd thesis, Toulouse 3, 2011. http://thesesups.ups-tlse.fr/2663/.
Der volle Inhalt der QuelleThis thesis addresses the problem of the shared decision between human and robot in the perspective of interactive problem solving that involved human and robot. The robot and human share common goals and must work together to identify how to realize (the capacity and the competence of each one are different). Issues to be addressed concerning this division of roles, sharing of authority in the execution of a task (taking initiative), to exhibit the knowledge such that both can play an optimal role in the resolution of common problems. We developed a task planner named HATP (Human Aware Task Planner). This planner is based on hierarchical task planning that is enriched with social rules. It can produce plans that are socially acceptable that means plans that make legible the actions and intentions of the robot. The planner also has the ability to plan for the robot and humans while ensuring optimality for each. We are also interested in a hybrid approach that mixes between task planning and geometrical planning. This approach allows the robot to have control over the sequence of actions that it produces, but also on how to achieve it. Thereby treat the human-robot interaction problem more cleverly, but also on several levels
Kruse, Thibault. „Planning for human robot interaction“. Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30059/document.
Der volle Inhalt der QuelleThe recent advances in robotics inspire visions of household and service robots making our lives easier and more comfortable. Such robots will be able to perform several object manipulation tasks required for household chores, autonomously or in cooperation with humans. In that role of human companion, the robot has to satisfy many additional requirements compared to well established fields of industrial robotics. The purpose of planning for robots is to achieve robot behavior that is goal-directed and establishes correct results. But in human-robot-interaction, robot behavior cannot merely be judged in terms of correct results, but must be agree-able to human stakeholders. This means that the robot behavior must suffice additional quality criteria. It must be safe, comfortable to human, and intuitively be understood. There are established practices to ensure safety and provide comfort by keeping sufficient distances between the robot and nearby persons. However providing behavior that is intuitively understood remains a challenge. This challenge greatly increases in cases of dynamic human-robot interactions, where the actions of the human in the future are unpredictable, and the robot needs to constantly adapt its plans to changes. This thesis provides novel approaches to improve the legibility of robot behavior in such dynamic situations. Key to that approach is not to merely consider the quality of a single plan, but the behavior of the robot as a result of replanning multiple times during an interaction. For navigation planning, this thesis introduces directional cost functions that avoid problems in conflict situations. For action planning, this thesis provides the approach of local replanning of transport actions based on navigational costs, to provide opportunistic behavior. Both measures help human observers understand the robot's beliefs and intentions during interactions and reduce confusion
Bodiroža, Saša. „Gestures in human-robot interaction“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17705.
Der volle Inhalt der QuelleGestures consist of movements of body parts and are a mean of communication that conveys information or intentions to an observer. Therefore, they can be effectively used in human-robot interaction, or in general in human-machine interaction, as a way for a robot or a machine to infer a meaning. In order for people to intuitively use gestures and understand robot gestures, it is necessary to define mappings between gestures and their associated meanings -- a gesture vocabulary. Human gesture vocabulary defines which gestures a group of people would intuitively use to convey information, while robot gesture vocabulary displays which robot gestures are deemed as fitting for a particular meaning. Effective use of vocabularies depends on techniques for gesture recognition, which considers classification of body motion into discrete gesture classes, relying on pattern recognition and machine learning. This thesis addresses both research areas, presenting development of gesture vocabularies as well as gesture recognition techniques, focusing on hand and arm gestures. Attentional models for humanoid robots were developed as a prerequisite for human-robot interaction and a precursor to gesture recognition. A method for defining gesture vocabularies for humans and robots, based on user observations and surveys, is explained and experimental results are presented. As a result of the robot gesture vocabulary experiment, an evolutionary-based approach for refinement of robot gestures is introduced, based on interactive genetic algorithms. A robust and well-performing gesture recognition algorithm based on dynamic time warping has been developed. Most importantly, it employs one-shot learning, meaning that it can be trained using a low number of training samples and employed in real-life scenarios, lowering the effect of environmental constraints and gesture features. Finally, an approach for learning a relation between self-motion and pointing gestures is presented.
Ahmed, Muhammad Rehan. „Compliance Control of Robot Manipulator for Safe Physical Human Robot Interaction“. Doctoral thesis, Örebro universitet, Akademin för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-13986.
Der volle Inhalt der QuelleToris, Russell C. „Bringing Human-Robot Interaction Studies Online via the Robot Management System“. Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/1058.
Der volle Inhalt der QuelleNitz, Pettersson Hannes, und Samuel Vikström. „VISION-BASED ROBOT CONTROLLER FOR HUMAN-ROBOT INTERACTION USING PREDICTIVE ALGORITHMS“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54609.
Der volle Inhalt der QuelleBücher zum Thema "Robot-Robot interaction"
Jost, Céline, Brigitte Le Pévédic, Tony Belpaeme, Cindy Bethel, Dimitrios Chrysostomou, Nigel Crook, Marine Grandgeorge und Nicole Mirnig, Hrsg. Human-Robot Interaction. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42307-0.
Der volle Inhalt der QuelleMansour, Rahimi, und Karwowski Waldemar 1953-, Hrsg. Human-robot interaction. London: Taylor & Francis, 1992.
Den vollen Inhalt der Quelle findenPrassler, Erwin, Gisbert Lawitzky, Andreas Stopp, Gerhard Grunwald, Martin Hägele, Rüdiger Dillmann und Ioannis Iossifidis, Hrsg. Advances in Human-Robot Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b97960.
Der volle Inhalt der QuelleGoodrich, Michael A. Human-robot interaction: A survey. Hanover: Now Publishers, 2007.
Den vollen Inhalt der Quelle findenXing, Bo, und Tshilidzi Marwala. Smart Maintenance for Human–Robot Interaction. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67480-3.
Der volle Inhalt der QuelleAyanoğlu, Hande, und Emília Duarte, Hrsg. Emotional Design in Human-Robot Interaction. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96722-6.
Der volle Inhalt der QuelleDautenhahn, Kerstin, und Joe Saunders, Hrsg. New Frontiers in Human–Robot Interaction. Amsterdam: John Benjamins Publishing Company, 2011. http://dx.doi.org/10.1075/ais.2.
Der volle Inhalt der QuelleWang, Xiangyu, Hrsg. Mixed Reality and Human-Robot Interaction. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0582-1.
Der volle Inhalt der QuelleNew frontiers in human-robot interaction. Philadelphia: John Benjamins Pub., 2011.
Den vollen Inhalt der Quelle findenWang, Xiangyu. Mixed Reality and Human-Robot Interaction. Dordrecht: Springer Science+Business Media B.V., 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Robot-Robot interaction"
Nehmzow, Ulrich. „Computer Modelling of Robot-Environment Interaction“. In Robot Behaviour, 1–28. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-397-2_7.
Der volle Inhalt der QuelleDuan, Feng, Wenyu Li und Ying Tan. „Implementation of Robot Voice Interaction Functionality: PocketSphinx“. In Intelligent Robot, 239–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8253-8_10.
Der volle Inhalt der QuelleDuan, Feng, Wenyu Li und Ying Tan. „Robot Voice Interaction Functions of Basic Theory“. In Intelligent Robot, 223–37. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8253-8_9.
Der volle Inhalt der QuelleIr, André Pirlet. „The Role of Standardization in Technical Regulations“. In Human–Robot Interaction, 1–8. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-1.
Der volle Inhalt der QuelleTakács, Árpád, Imre J. Rudas und Tamás Haidegger. „The Other End of Human–Robot Interaction“. In Human–Robot Interaction, 137–70. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-10.
Der volle Inhalt der QuelleLőrincz, Márton. „Passive Bilateral Teleoperation with Safety Considerations“. In Human–Robot Interaction, 171–86. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-11.
Der volle Inhalt der QuelleFiorini, Paolo, und Riccardo Muradore. „Human–Robot Interfaces in Autonomous Surgical Robots“. In Human–Robot Interaction, 187–99. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-12.
Der volle Inhalt der QuelleFosch-Villaronga, Eduard, und Angelo Jr Golia. „The Intricate Relationships Between Private Standards and Public Policymaking in Personal Care Robots: Who Cares More?“ In Human–Robot Interaction, 9–18. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-2.
Der volle Inhalt der QuelleFiorini, Sandro Rama, Abdelghani Chibani, Tamás Haidegger, Joel Luis Carbonera, Craig Schlenoff, Jacek Malec, Edson Prestes et al. „Standard Ontologies and HRI“. In Human–Robot Interaction, 19–47. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-3.
Der volle Inhalt der QuellePark, Hong Seong, und Gurvinder Singh Virk. „Robot Modularity for Service Robots“. In Human–Robot Interaction, 49–70. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Robot-Robot interaction"
Billings, Deborah R., Kristin E. Schaefer, Jessie Y. C. Chen und Peter A. Hancock. „Human-robot interaction“. In the seventh annual ACM/IEEE international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2157689.2157709.
Der volle Inhalt der Quelle„Human robot interaction“. In 2016 9th International Conference on Human System Interactions (HSI). IEEE, 2016. http://dx.doi.org/10.1109/hsi.2016.7529627.
Der volle Inhalt der QuelleSt-Onge, David, Nicolas Reeves und Nataliya Petkova. „Robot-Human Interaction“. In HRI '17: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3029798.3034785.
Der volle Inhalt der QuelleBjörling, Elin A., Emma Rose und Rachel Ren. „Teen-Robot Interaction“. In HRI '18: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3173386.3177068.
Der volle Inhalt der QuelleShahid, Suleman, Emiel Krahmer und Marc Swerts. „Child-robot interaction“. In the 2011 annual conference extended abstracts. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1979742.1979781.
Der volle Inhalt der QuelleReynolds-Cuéllar, Pedro, und Andrés F. Salazar-Gómez. „Nature-Robot Interaction“. In HRI '23: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3568294.3580034.
Der volle Inhalt der QuelleJeong-Yean Yang und Dong-Soo Kwon. „The effect of multiple robot interaction on human-robot interaction“. In 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2012. http://dx.doi.org/10.1109/urai.2012.6462923.
Der volle Inhalt der QuelleWang, Heng, Xiuzhi Li und Xiangyin Zhang. „Multimodal Human-robot Interaction on Service Robot“. In 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2021. http://dx.doi.org/10.1109/iaeac50856.2021.9391068.
Der volle Inhalt der QuelleAyub, Ali, Marcus Scheunemann, Christoforos Mavrogiannis, Jimin Rhim, Kerstin Dautenhahn, Chrystopher L. Nehaniv, Verena V. Hafner und Daniel Polani. „Robot Curiosity in Human-Robot Interaction (RCHRI)“. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2022. http://dx.doi.org/10.1109/hri53351.2022.9889478.
Der volle Inhalt der QuelleLaplaza, Javier, Nicolas Rodriguez, J. E. Dominguez-Vidal, Fernando Herrero, Sergi Hernandez, Alejandro Lopez, Alberto Sanfeliu und Anais Garrell. „IVO Robot: A New Social Robot for Human-Robot Collaboration“. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2022. http://dx.doi.org/10.1109/hri53351.2022.9889458.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Robot-Robot interaction"
Arkin, Ronald C., und Lilia Moshkina. Affect in Human-Robot Interaction. Fort Belvoir, VA: Defense Technical Information Center, Januar 2014. http://dx.doi.org/10.21236/ada593747.
Der volle Inhalt der QuelleSofge, D., Dennis Perzanowski, M. Skubic, N. Cassimatis, J. G. Trafton, D. Brock, Magda Bugajska, William Adams und Alan C. Schultz. Achieving Collaborative Interaction with a Humanoid Robot. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada434972.
Der volle Inhalt der QuelleMartinson, E., und W. Lawson. Learning Speaker Recognition Models through Human-Robot Interaction. Fort Belvoir, VA: Defense Technical Information Center, Mai 2011. http://dx.doi.org/10.21236/ada550036.
Der volle Inhalt der QuelleManring, Levi H., John Monroe Pederson und Dillon Gabriel Potts. Improving Human-Robot Interaction and Control Through Augmented Reality. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467198.
Der volle Inhalt der QuelleJiang, Shu, und Ronald C. Arkin. Mixed-Initiative Human-Robot Interaction: Definition, Taxonomy, and Survey. Fort Belvoir, VA: Defense Technical Information Center, Januar 2015. http://dx.doi.org/10.21236/ada620347.
Der volle Inhalt der QuelleScholtz, Jean, Jeff Young, Holly A. Yanco und Jill L. Drury. Evaluation of Human-Robot Interaction Awareness in Search and Rescue. Fort Belvoir, VA: Defense Technical Information Center, Januar 2006. http://dx.doi.org/10.21236/ada456128.
Der volle Inhalt der QuelleBagchi, Shelly, Murat Aksu, Megan Zimmerman, Jeremy A. Marvel, Brian Antonishek, Heni Ben Amor, Terry Fong, Ross Mead und Yue Wang. Workshop Report: Test Methods and Metrics for Effective HRI in Collaborative Human-Robot Teams, ACM/IEEE Human-Robot Interaction Conference, 2019. National Institute of Standards and Technology, Dezember 2020. http://dx.doi.org/10.6028/nist.ir.8339.
Der volle Inhalt der QuelleBagchi, Shelly, Jeremy A. Marvel, Megan Zimmerman, Murat Aksu, Brian Antonishek, Heni Ben Amor, Terry Fong, Ross Mead und Yue Wang. Workshop Report: Test Methods and Metrics for Effective HRI in Real-World Human-Robot Teams, ACM/IEEE Human-Robot Interaction Conference, 2020 (Virtual). National Institute of Standards and Technology, Januar 2021. http://dx.doi.org/10.6028/nist.ir.8345.
Der volle Inhalt der QuelleSchaefer, Kristin E., Deborah R. Billings, James L. Szalma, Jeffrey K. Adams, Tracy L. Sanders, Jessie Y. Chen und Peter A. Hancock. A Meta-Analysis of Factors Influencing the Development of Trust in Automation: Implications for Human-Robot Interaction. Fort Belvoir, VA: Defense Technical Information Center, Juli 2014. http://dx.doi.org/10.21236/ada607926.
Der volle Inhalt der QuelleBagchi, Shelly, Jeremy A. Marvel, Megan Zimmerman, Murat Aksu, Brian Antonishek, Xiang Li, Heni Ben Amor, Terry Fong, Ross Mead und Yue Wang. Workshop Report: Novel and Emerging Test Methods and Metrics for Effective HRI, ACM/IEEE Conference on Human-Robot Interaction, 2021. National Institute of Standards and Technology, Februar 2022. http://dx.doi.org/10.6028/nist.ir.8417.
Der volle Inhalt der Quelle