Zeitschriftenartikel zum Thema „RNA“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: RNA.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "RNA" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

OHNO, Hirohisa, und Hirohide SAITO. „RNA/RNP Nanotechnology for Biological Applications“. Seibutsu Butsuri 56, Nr. 1 (2016): 023–26. http://dx.doi.org/10.2142/biophys.56.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

SHIROGUCHI, Katsuyuki. „RNA Sequencing“. Seibutsu Butsuri 53, Nr. 6 (2013): 290–94. http://dx.doi.org/10.2142/biophys.53.290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shi, Rui-Zhu, Yuan-Qing Pan und Li Xing. „RNA Helicase A Regulates the Replication of RNA Viruses“. Viruses 13, Nr. 3 (25.02.2021): 361. http://dx.doi.org/10.3390/v13030361.

Der volle Inhalt der Quelle
Annotation:
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Afonin, Kirill A., Mathias Viard, Ioannis Kagiampakis, Christopher L. Case, Marina A. Dobrovolskaia, Jen Hofmann, Ashlee Vrzak et al. „Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles“. ACS Nano 9, Nr. 1 (18.12.2014): 251–59. http://dx.doi.org/10.1021/nn504508s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kim, Hyunjong, und Juhee Ryu. „Mechanism of Circular RNAs and Their Potential as Novel Therapeutic Agents in Retinal Vascular Diseases“. Yakhak Hoeji 67, Nr. 6 (31.12.2023): 325–34. http://dx.doi.org/10.17480/psk.2023.67.6.325.

Der volle Inhalt der Quelle
Annotation:
Maintaining and preserving visual function became critical in this aging society. The number of patients with retinal vascular disease such as retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy is gradually increasing due to increased life expectancy, advancements in the technology of delivering premature babies, and complications due to eating habits. To treat these retinal vascular diseases, surgical intervention such as laser photocoagulation and anti-vascular endothelial growth factor (VEGF) drugs can be considered. However, these treatment options are accompanied by various complications and adverse effects. Thus, new treatments focusing on the pathogenesis of retinal vascular disease need to be developed. Various evidences suggest that circular RNA is involved in the pathogenesis of retinal disease. In this article, we discuss about currently used treatments of retinal vascular diseases and the emerging role of circular RNAs in the pathogenesis of retinal vascular diseases. Therefore, understanding the mechanism of circular RNA regulating retinal disease and developing therapeutics using these circular RNAs may offer novel treatment options to cure retinal vascular disease.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rajkowitsch, Lukas, Doris Chen, Sabine Stampfl, Katharina Semrad, Christina Waldsich, Oliver Mayer, Michael F. Jantsch, Robert Konrat, Udo Bläsi und Renée Schroeder. „RNA Chaperones, RNA Annealers and RNA Helicases“. RNA Biology 4, Nr. 3 (Juli 2007): 118–30. http://dx.doi.org/10.4161/rna.4.3.5445.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sengoku, T., O. Nureki und S. Yokoyama. „Structural basis for RNA translocation by RNA helicase“. Seibutsu Butsuri 43, supplement (2003): S98. http://dx.doi.org/10.2142/biophys.43.s98_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tang, Lin. „Mapping RNA–RNA interactions“. Nature Methods 17, Nr. 8 (31.07.2020): 760. http://dx.doi.org/10.1038/s41592-020-0922-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ligoxygakis, P. „RNA that synthesizes RNA“. Trends in Genetics 17, Nr. 7 (01.07.2001): 380. http://dx.doi.org/10.1016/s0168-9525(01)02391-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ogasawara, Shinzi, und Ai Yamada. „RNA Editing with Viral RNA-Dependent RNA Polymerase“. ACS Synthetic Biology 11, Nr. 1 (03.01.2022): 46–52. http://dx.doi.org/10.1021/acssynbio.1c00332.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ahlquist, P. „RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing“. Science 296, Nr. 5571 (17.05.2002): 1270–73. http://dx.doi.org/10.1126/science.1069132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Arnott, Struther, R. Chandrasekaran, R. P. Millane und H. S. Park. „RNA-RNA, DNA-DNA, and DNA-RNA Polymorphism“. Biophysical Journal 49, Nr. 1 (Januar 1986): 3–5. http://dx.doi.org/10.1016/s0006-3495(86)83568-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Yano, A., und K. Harada. „2P142 Inhibition of RNA-protein interaction by RNA-RNA interaction“. Seibutsu Butsuri 45, supplement (2005): S155. http://dx.doi.org/10.2142/biophys.45.s155_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Taylor, J. P. „RNA That Gets RAN in Neurodegeneration“. Science 339, Nr. 6125 (14.03.2013): 1282–83. http://dx.doi.org/10.1126/science.1236450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Stackebrandt, Erko, Werner Liesack und Dagmar Witt. „Ribosomal RNA and rDNA sequence analyses“. Gene 115, Nr. 1-2 (Juni 1992): 255–60. http://dx.doi.org/10.1016/0378-1119(92)90567-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhang, X., D. Wu, L. Chen, X. Li, J. Yang, D. Fan, T. Dong et al. „RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction“. RNA 20, Nr. 7 (06.05.2014): 989–93. http://dx.doi.org/10.1261/rna.044776.114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Alkan, Can, Emre Karakoç, Joseph H. Nadeau, S. Cenk Sahinalp und Kaizhong Zhang. „RNA–RNA Interaction Prediction and Antisense RNA Target Search“. Journal of Computational Biology 13, Nr. 2 (März 2006): 267–82. http://dx.doi.org/10.1089/cmb.2006.13.267.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Newburn, Laura R., und K. Andrew White. „Trans-Acting RNA–RNA Interactions in Segmented RNA Viruses“. Viruses 11, Nr. 8 (14.08.2019): 751. http://dx.doi.org/10.3390/v11080751.

Der volle Inhalt der Quelle
Annotation:
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Cazenave, C., und O. C. Uhlenbeck. „RNA template-directed RNA synthesis by T7 RNA polymerase.“ Proceedings of the National Academy of Sciences 91, Nr. 15 (19.07.1994): 6972–76. http://dx.doi.org/10.1073/pnas.91.15.6972.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

McGinness, Kathleen E., und Gerald F. Joyce. „RNA-Catalyzed RNA Ligation on an External RNA Template“. Chemistry & Biology 9, Nr. 3 (März 2002): 297–307. http://dx.doi.org/10.1016/s1074-5521(02)00110-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Predki, Paul F., L. Mike Nayak, Morris B. C. Gottlieb und Lynne Regan. „Dissecting RNA-protein interactions: RNA-RNA recognition by Rop“. Cell 80, Nr. 1 (Januar 1995): 41–50. http://dx.doi.org/10.1016/0092-8674(95)90449-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

HONDA, Tomoyuki, und Keizo TOMONAGA. „Possible roles of endogenous RNA virus elements in RNA virus infection“. Uirusu 66, Nr. 1 (2016): 39–46. http://dx.doi.org/10.2222/jsv.66.39.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Xue, Yuanchao. „Architecture of RNA–RNA interactions“. Current Opinion in Genetics & Development 72 (Februar 2022): 138–44. http://dx.doi.org/10.1016/j.gde.2021.11.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Röthlisberger, Pascal, Christian Berk und Jonathan Hall. „RNA Chemistry for RNA Biology“. CHIMIA International Journal for Chemistry 73, Nr. 5 (29.05.2019): 368–73. http://dx.doi.org/10.2533/chimia.2019.368.

Der volle Inhalt der Quelle
Annotation:
Advances in the chemical synthesis of RNA have opened new possibilities to address current questions in RNA biology. Access to site-specifically modified oligoribonucleotides is often a pre-requisite for RNA chemical-biology projects. Driven by the enormous research efforts for development of oligonucleotide therapeutics, a wide range of chemical modifications have been developed to modulate the intrinsic properties of nucleic acids in order to fit their use as therapeutics or research tools. The RNA synthesis platform, supported by the NCCR RNA & Disease, aims to provide access to a large variety of chemically modified nucleic acids. In this review, we describe some of the recent projects that involved work of the platform and highlight how RNA chemistry supports new discoveries in RNA biology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

GUTHRIE, CHRISTINE. „Catalytic RNA and RNA Splicing“. American Zoologist 29, Nr. 2 (Mai 1989): 557–67. http://dx.doi.org/10.1093/icb/29.2.557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Fu, Xiang-Dong. „RNA helicases regulate RNA condensates“. Cell Research 30, Nr. 4 (09.03.2020): 281–82. http://dx.doi.org/10.1038/s41422-020-0296-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Newman, Andy. „RNA enzymes for RNA splicing“. Nature 413, Nr. 6857 (Oktober 2001): 695–96. http://dx.doi.org/10.1038/35099665.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Abe, Hiroshi. „Nanostructured RNA for RNA Intereference“. YAKUGAKU ZASSHI 133, Nr. 3 (01.03.2013): 373–78. http://dx.doi.org/10.1248/yakushi.12-00239-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Khemici, Vanessa, und Patrick Linder. „RNA helicases in RNA decay“. Biochemical Society Transactions 46, Nr. 1 (19.01.2018): 163–72. http://dx.doi.org/10.1042/bst20170052.

Der volle Inhalt der Quelle
Annotation:
RNA molecules have the tendency to fold into complex structures or to associate with complementary RNAs that exoribonucleases have difficulties processing or degrading. Therefore, degradosomes in bacteria and organelles as well as exosomes in eukaryotes have teamed-up with RNA helicases. Whereas bacterial degradosomes are associated with RNA helicases from the DEAD-box family, the exosomes and mitochondrial degradosome use the help of Ski2-like and Suv3 RNA helicases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Meyer, Irmtraud M. „Predicting novel RNA–RNA interactions“. Current Opinion in Structural Biology 18, Nr. 3 (Juni 2008): 387–93. http://dx.doi.org/10.1016/j.sbi.2008.03.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Westhof, Eric, Benoît Masquida und Luc Jaeger. „RNA tectonics: towards RNA design“. Folding and Design 1, Nr. 4 (August 1996): R78—R88. http://dx.doi.org/10.1016/s1359-0278(96)00037-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Peng, LiNa, YuJiao Li, Lan Zhang und WenQiang Yu. „Moving RNA moves RNA forward“. Science China Life Sciences 56, Nr. 10 (05.09.2013): 914–20. http://dx.doi.org/10.1007/s11427-013-4545-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Li, Thomas J. X., und Christian M. Reidys. „Combinatorics of RNA–RNA interaction“. Journal of Mathematical Biology 64, Nr. 3 (04.05.2011): 529–56. http://dx.doi.org/10.1007/s00285-011-0423-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Muckstein, U., H. Tafer, J. Hackermuller, S. H. Bernhart, P. F. Stadler und I. L. Hofacker. „Thermodynamics of RNA-RNA binding“. Bioinformatics 22, Nr. 10 (29.01.2006): 1177–82. http://dx.doi.org/10.1093/bioinformatics/btl024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

SCHMIDT, FRANCIS J., BONGRAE CHO und HUGH B. NICHOLAS. „RNA Libraries and RNA Recognitiona“. Annals of the New York Academy of Sciences 782, Nr. 1 (Mai 1996): 526–33. http://dx.doi.org/10.1111/j.1749-6632.1996.tb40590.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Menzel, Peter, Stefan E. Seemann und Jan Gorodkin. „RILogo: visualizing RNA–RNA interactions“. Bioinformatics 28, Nr. 19 (23.07.2012): 2523–26. http://dx.doi.org/10.1093/bioinformatics/bts461.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Kok, Chee Choy, und Peter C. McMinn. „Picornavirus RNA-dependent RNA polymerase“. International Journal of Biochemistry & Cell Biology 41, Nr. 3 (März 2009): 498–502. http://dx.doi.org/10.1016/j.biocel.2008.03.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Günzl, Arthur, Thomas Bruderer, Gabriele Laufer, Bernd Schimanski, Lan-Chun Tu, Hui-Min Chung, Pei-Tseng Lee und Mary Gwo-Shu Lee. „RNA Polymerase I Transcribes Procyclin Genes and Variant Surface Glycoprotein Gene Expression Sites in Trypanosoma brucei“. Eukaryotic Cell 2, Nr. 3 (Juni 2003): 542–51. http://dx.doi.org/10.1128/ec.2.3.542-551.2003.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT In eukaryotes, RNA polymerase (pol) I exclusively transcribes the large rRNA gene unit (rDNA) and mRNA is synthesized by RNA pol II. The African trypanosome, Trypanosoma brucei, represents an exception to this rule. In this organism, transcription of genes encoding the variant surface glycoprotein (VSG) and the procyclins is resistant to α-amanitin, indicating that it is mediated by RNA pol I, while other protein-coding genes are transcribed by RNA pol II. To obtain firm proof for this concept, we generated a T. brucei cell line which exclusively expresses protein C epitope-tagged RNA pol I. Using an anti-protein C immunoaffinity matrix, we specifically depleted RNA pol I from transcriptionally active cell extracts. The depletion of RNA pol I impaired in vitro transcription initiated at the rDNA promoter, the GPEET procyclin gene promoter, and a VSG gene expression site promoter but did not affect transcription from the spliced leader (SL) RNA gene promoter. Fittingly, induction of RNA interference against the RNA pol I largest subunit in insect-form trypanosomes significantly reduced the relative transcriptional efficiency of rDNA, procyclin genes, and VSG expression sites in vivo whereas that of SL RNA, αβ-tubulin, and heat shock protein 70 genes was not affected. Our studies unequivocally show that T. brucei harbors a multifunctional RNA pol I which, in addition to transcribing rDNA, transcribes procyclin genes and VSG gene expression sites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Hammond, T. M., und N. P. Keller. „RNA Silencing inAspergillus nidulansIs Independent of RNA-Dependent RNA Polymerases“. Genetics 169, Nr. 2 (15.11.2004): 607–17. http://dx.doi.org/10.1534/genetics.104.035964.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Skeparnias, Ilias, und Jinwei Zhang. „Cooperativity and Interdependency between RNA Structure and RNA–RNA Interactions“. Non-Coding RNA 7, Nr. 4 (15.12.2021): 81. http://dx.doi.org/10.3390/ncrna7040081.

Der volle Inhalt der Quelle
Annotation:
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Snider, Daltry L., und Stacy M. Horner. „RNA modification of an RNA modifier prevents self-RNA sensing“. PLOS Biology 19, Nr. 7 (30.07.2021): e3001342. http://dx.doi.org/10.1371/journal.pbio.3001342.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Koh, Hye Ran, Li Xing, Lawrence Kleiman und Sua Myong. „Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing“. Nucleic Acids Research 42, Nr. 13 (09.06.2014): 8556–64. http://dx.doi.org/10.1093/nar/gku523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Shioda, Norifumi. „RNA toxicity and RAN translation in repeat expansion disorders“. Folia Pharmacologica Japonica 150, Nr. 3 (2017): 165. http://dx.doi.org/10.1254/fpj.150.165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

KIKUCHI, Yo. „Current RNA World“. Journal of the Japan Veterinary Medical Association 52, Nr. 1 (1999): 1–5. http://dx.doi.org/10.12935/jvma1951.52.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

付, 洪. „Multifunction of LncRNA RMRP RNA“. Biophysics 08, Nr. 02 (2020): 19–27. http://dx.doi.org/10.12677/biphy.2020.82002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Turner, Richard. „RNA“. Nature 418, Nr. 6894 (Juli 2002): 213. http://dx.doi.org/10.1038/418213a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Darnell, James E. „RNA“. Scientific American 253, Nr. 4 (Oktober 1985): 68–78. http://dx.doi.org/10.1038/scientificamerican1085-68.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Karbstein, Katrin, und Jennifer A. Doudna. „RNA“. Chemistry & Biology 11, Nr. 2 (Februar 2004): 149–51. http://dx.doi.org/10.1016/j.chembiol.2004.02.007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Nybo, Kristie. „RNA Methods: RNA Extraction from Plasma“. BioTechniques 47, Nr. 4 (Oktober 2009): 821–23. http://dx.doi.org/10.2144/000113235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Rabhi, Makhlouf, Roman Tuma und Marc Boudvillain. „RNA remodeling by hexameric RNA helicases“. RNA Biology 7, Nr. 6 (November 2010): 655–66. http://dx.doi.org/10.4161/rna.7.6.13570.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie