Zeitschriftenartikel zum Thema „RNA viruses“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: RNA viruses.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "RNA viruses" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Shi, Rui-Zhu, Yuan-Qing Pan und Li Xing. „RNA Helicase A Regulates the Replication of RNA Viruses“. Viruses 13, Nr. 3 (25.02.2021): 361. http://dx.doi.org/10.3390/v13030361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
2

Ahlquist, Paul. „Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses“. Nature Reviews Microbiology 4, Nr. 5 (03.04.2006): 371–82. http://dx.doi.org/10.1038/nrmicro1389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sokoloski, Kevin J., Carol J. Wilusz und Jeffrey Wilusz. „Viruses: Overturning RNA Turnover“. RNA Biology 3, Nr. 4 (Oktober 2006): 140–44. http://dx.doi.org/10.4161/rna.3.4.4076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yang, Jie, Hongjie Xia, Qi Qian und Xi Zhou. „RNA chaperones encoded by RNA viruses“. Virologica Sinica 30, Nr. 6 (Dezember 2015): 401–9. http://dx.doi.org/10.1007/s12250-015-3676-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Enami, Masayoshi. „Negative-strand RNA viruses. Reverse genetics of negative-strand RNA viruses.“ Uirusu 45, Nr. 2 (1995): 145–57. http://dx.doi.org/10.2222/jsv.45.145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ahlquist, P. „RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing“. Science 296, Nr. 5571 (17.05.2002): 1270–73. http://dx.doi.org/10.1126/science.1069132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Newburn, Laura R., und K. Andrew White. „Trans-Acting RNA–RNA Interactions in Segmented RNA Viruses“. Viruses 11, Nr. 8 (14.08.2019): 751. http://dx.doi.org/10.3390/v11080751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
RNA viruses represent a large and important group of pathogens that infect a broad range of hosts. Segmented RNA viruses are a subclass of this group that encode their genomes in two or more molecules and package all of their RNA segments in a single virus particle. These divided genomes come in different forms, including double-stranded RNA, coding-sense single-stranded RNA, and noncoding single-stranded RNA. Genera that possess these genome types include, respectively, Orbivirus (e.g., Bluetongue virus), Dianthovirus (e.g., Red clover necrotic mosaic virus) and Alphainfluenzavirus (e.g., Influenza A virus). Despite their distinct genomic features and diverse host ranges (i.e., animals, plants, and humans, respectively) each of these viruses uses trans-acting RNA–RNA interactions (tRRIs) to facilitate co-packaging of their segmented genome. The tRRIs occur between different viral genome segments and direct the selective packaging of a complete genome complement. Here we explore the current state of understanding of tRRI-mediated co-packaging in the abovementioned viruses and examine other known and potential functions for this class of RNA–RNA interaction.
8

SATO, Hironori, und Masaru YOKOYAMA. „RNA viruses and mutations“. Uirusu 55, Nr. 2 (2005): 221–29. http://dx.doi.org/10.2222/jsv.55.221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

MINE, Akira, und Tetsuro OKUNO. „Viruses and RNA silencing“. Uirusu 58, Nr. 1 (2008): 61–68. http://dx.doi.org/10.2222/jsv.58.61.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Strauss, J. H., und E. G. Strauss. „Evolution of RNA Viruses“. Annual Review of Microbiology 42, Nr. 1 (Oktober 1988): 657–83. http://dx.doi.org/10.1146/annurev.mi.42.100188.003301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Carmichael, Gordon G. „Silencing viruses with RNA“. Nature 418, Nr. 6896 (Juli 2002): 379–80. http://dx.doi.org/10.1038/418379a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

King, Andrew M. Q. „RNA viruses do it“. Trends in Genetics 3 (Januar 1987): 60–61. http://dx.doi.org/10.1016/0168-9525(87)90173-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Billiau, A. „Double-stranded RNA viruses“. Antiviral Research 5, Nr. 3 (Juni 1985): 191–92. http://dx.doi.org/10.1016/0166-3542(85)90052-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Saiz, Juan-Carlos. „Vaccines against RNA Viruses“. Vaccines 8, Nr. 3 (27.08.2020): 479. http://dx.doi.org/10.3390/vaccines8030479.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Slamon, Dennis J., und Irvin S. Y. Chen. „RNA viruses and cancer“. Infectious Diseases Newsletter 5, Nr. 4 (April 1986): 28–30. http://dx.doi.org/10.1016/0278-2316(86)90068-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Hammarskjöld, Marie-Louise. „RNA and lessons from viruses“. RNA 21, Nr. 4 (16.03.2015): 632–33. http://dx.doi.org/10.1261/rna.050310.115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lundstrom, Kenneth. „Self-Replicating RNA Viruses for RNA Therapeutics“. Molecules 23, Nr. 12 (13.12.2018): 3310. http://dx.doi.org/10.3390/molecules23123310.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic genes due to their high capacity of RNA replication. This has contributed to novel approaches for therapeutic applications including vaccine development and gene therapy-based immunotherapy. Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral vectors can generate antibody responses against infectious agents and tumor cells. Moreover, protection against challenges with pathogenic Ebola virus was obtained in primates immunized with alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for several indications with self-amplifying RNA viruses. In this context, alphaviruses have been subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus. Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose of this review is to summarize the achievements of using self-replicating RNA viruses for RNA therapy based on preclinical animal studies and clinical trials in humans.
18

Lundstrom, Kenneth. „Self-Amplifying RNA Viruses as RNA Vaccines“. International Journal of Molecular Sciences 21, Nr. 14 (20.07.2020): 5130. http://dx.doi.org/10.3390/ijms21145130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses and rhabdoviruses are characterized by their capacity of highly efficient self-amplification of RNA in host cells, which make them attractive vehicles for vaccine development. Particularly, alphaviruses and flaviviruses can be administered as recombinant particles, layered DNA/RNA plasmid vectors carrying the RNA replicon and even RNA replicon molecules. Self-amplifying RNA viral vectors have been used for high level expression of viral and tumor antigens, which in immunization studies have elicited strong cellular and humoral immune responses in animal models. Vaccination has provided protection against challenges with lethal doses of viral pathogens and tumor cells. Moreover, clinical trials have demonstrated safe application of RNA viral vectors and even promising results in rhabdovirus-based phase III trials on an Ebola virus vaccine. Preclinical and clinical applications of self-amplifying RNA viral vectors have proven efficient for vaccine development and due to the presence of RNA replicons, amplification of RNA in host cells will generate superior immune responses with significantly reduced amounts of RNA delivered. The need for novel and efficient vaccines has become even more evident due to the global COVID-19 pandemic, which has further highlighted the urgency in challenging emerging diseases.
19

Raj, Pushker. „Classification of medically important viruses II: RNA viruses“. Clinical Microbiology Newsletter 16, Nr. 17 (September 1994): 129–34. http://dx.doi.org/10.1016/0196-4399(94)90005-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Fisher, Susie. „Are RNA Viruses Vestiges of an RNA World?“ Journal for General Philosophy of Science 41, Nr. 1 (25.05.2010): 121–41. http://dx.doi.org/10.1007/s10838-010-9119-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Geng, Guowei, Deya Wang, Zhifei Liu, Yalan Wang, Mingjing Zhu, Xinran Cao, Chengming Yu und Xuefeng Yuan. „Translation of Plant RNA Viruses“. Viruses 13, Nr. 12 (13.12.2021): 2499. http://dx.doi.org/10.3390/v13122499.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
22

Silva-Júnior, Edeildo F. da. „Entry Inhibitors of RNA Viruses“. Current Medicinal Chemistry 29, Nr. 4 (Februar 2022): 609–11. http://dx.doi.org/10.2174/092986732904220207113503.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Pompei, Simone, Vittorio Loreto und Francesca Tria. „Phylogenetic Properties of RNA Viruses“. PLoS ONE 7, Nr. 9 (20.09.2012): e44849. http://dx.doi.org/10.1371/journal.pone.0044849.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Simon-Loriere, Etienne, und Edward C. Holmes. „Why do RNA viruses recombine?“ Nature Reviews Microbiology 9, Nr. 8 (04.07.2011): 617–26. http://dx.doi.org/10.1038/nrmicro2614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Steinhauer, D. A., und J. J. Holland. „Rapid Evolution of RNA Viruses“. Annual Review of Microbiology 41, Nr. 1 (Oktober 1987): 409–31. http://dx.doi.org/10.1146/annurev.mi.41.100187.002205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Gillespie, J. H. „Episodic evolution of RNA viruses.“ Proceedings of the National Academy of Sciences 90, Nr. 22 (15.11.1993): 10411–12. http://dx.doi.org/10.1073/pnas.90.22.10411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Zeller, Mark, und Kristian G. Andersen. „Backbone of RNA viruses uncovered“. Nature 556, Nr. 7700 (April 2018): 182–83. http://dx.doi.org/10.1038/d41586-018-03923-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Said, Elias A., Felipe Diaz-Griffero, Dorine Bonte, Daniel Lamarre und Ali A. Al-Jabri. „Immune Responses to RNA Viruses“. Journal of Immunology Research 2018 (12.06.2018): 1–2. http://dx.doi.org/10.1155/2018/5473678.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Russell, Stephen J. „RNA viruses as virotherapy agents“. Cancer Gene Therapy 9, Nr. 12 (22.11.2002): 961–66. http://dx.doi.org/10.1038/sj.cgt.7700535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Woodland, David L. „A Focus on RNA Viruses“. Viral Immunology 24, Nr. 2 (April 2011): 67–68. http://dx.doi.org/10.1089/vim.2011.ed.24.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Rima, B. K. „Viruses in the RNA World“. Biochemical Society Transactions 24, Nr. 1 (01.02.1996): 1–13. http://dx.doi.org/10.1042/bst0240001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

BHUVANESHWARI, M., H. SUBRAMANYA, M. MURTHY, K. GOPINATH und H. SAVITHRI. „Architecture of small RNA viruses“. Progress in Crystal Growth and Characterization of Materials 34, Nr. 1-4 (1997): 1–10. http://dx.doi.org/10.1016/s0960-8974(97)00001-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Michalakis, Y. „EVOLUTION: Epistasis in RNA Viruses“. Science 306, Nr. 5701 (26.11.2004): 1492–93. http://dx.doi.org/10.1126/science.1106677.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Colbère-Garapin, Florence, Bruno Blondel, Aure Saulnier, Isabelle Pelletier und Karine Labadie. „Silencing viruses by RNA interference“. Microbes and Infection 7, Nr. 4 (April 2005): 767–75. http://dx.doi.org/10.1016/j.micinf.2005.02.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Ruigrok, R. W. H. „Assembly of enveloped RNA viruses“. FEBS Letters 202, Nr. 1 (23.06.1986): 159. http://dx.doi.org/10.1016/0014-5793(86)80670-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Lang, Andrew S., Matthew L. Rise, Alexander I. Culley und Grieg F. Steward. „RNA viruses in the sea“. FEMS Microbiology Reviews 33, Nr. 2 (März 2009): 295–323. http://dx.doi.org/10.1111/j.1574-6976.2008.00132.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Drake, J. W., und J. J. Holland. „Mutation rates among RNA viruses“. Proceedings of the National Academy of Sciences 96, Nr. 24 (23.11.1999): 13910–13. http://dx.doi.org/10.1073/pnas.96.24.13910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Dadley-Moore, Davina. „RNA viruses: all bases covered?“ Nature Reviews Immunology 6, Nr. 5 (Mai 2006): 341. http://dx.doi.org/10.1038/nri1856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Rossmann, Michael G. „The evolution of RNA viruses“. BioEssays 7, Nr. 3 (September 1987): 99–103. http://dx.doi.org/10.1002/bies.950070302.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Weber, Friedemann, Valentina Wagner, Simon B. Rasmussen, Rune Hartmann und Søren R. Paludan. „Double-Stranded RNA Is Produced by Positive-Strand RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses“. Journal of Virology 80, Nr. 10 (15.05.2006): 5059–64. http://dx.doi.org/10.1128/jvi.80.10.5059-5064.2006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ABSTRACT Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.
41

Richaud, Aurélien, Lise Frézal, Stephen Tahan, Hongbing Jiang, Joshua A. Blatter, Guoyan Zhao, Taniya Kaur, David Wang und Marie-Anne Félix. „Vertical transmission in Caenorhabditis nematodes of RNA molecules encoding a viral RNA-dependent RNA polymerase“. Proceedings of the National Academy of Sciences 116, Nr. 49 (18.11.2019): 24738–47. http://dx.doi.org/10.1073/pnas.1903903116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Here, we report on the discovery in Caenorhabditis nematodes of multiple vertically transmitted RNAs coding for putative RNA-dependent RNA polymerases. Their sequences share similarity to distinct RNA viruses, including bunyaviruses, narnaviruses, and sobemoviruses. The sequences are present exclusively as RNA and are not found in DNA form. The RNAs persist in progeny after bleach treatment of adult animals, indicating vertical transmission of the RNAs. We tested one of the infected strains for transmission to an uninfected strain and found that mating of infected animals with uninfected animals resulted in infected progeny. By in situ hybridization, we detected several of these RNAs in the cytoplasm of the male and female germline of the nematode host. The Caenorhabditis hosts were found defective in degrading exogenous double-stranded RNAs, which may explain retention of viral-like RNAs. Strikingly, one strain, QG551, harbored three distinct virus-like RNA elements. Specific patterns of small RNAs complementary to the different viral-like RNAs were observed, suggesting that the different RNAs are differentially recognized by the RNA interference (RNAi) machinery. While vertical transmission of viruses in the family Narnaviridae, which are known as capsidless viruses, has been described in fungi, these observations provide evidence that multicellular animal cells harbor similar viruses.
42

Chao, Shufen, Haoran Wang, Shu Zhang, Guoqing Chen, Chonghui Mao, Yang Hu, Fengquan Yu et al. „Novel RNA Viruses Discovered in Weeds in Rice Fields“. Viruses 14, Nr. 11 (10.11.2022): 2489. http://dx.doi.org/10.3390/v14112489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Weeds often grow alongside crop plants. In addition to competing with crops for nutrients, water and space, weeds host insect vectors or act as reservoirs for viral diversity. However, little is known about viruses infecting rice weeds. In this work, we used metatranscriptomic deep sequencing to identify RNA viruses from 29 weed samples representing 23 weed species. A total of 224 RNA viruses were identified: 39 newly identified viruses are sufficiently divergent to comprise new families and genera. The newly identified RNA viruses clustered within 18 viral families. Of the identified viruses, 196 are positive-sense single-stranded RNA viruses, 24 are negative-sense single-stranded RNA viruses and 4 are double-stranded RNA viruses. We found that some novel RNA viruses clustered within the families or genera of several plant virus species and have the potential to infect plants. Collectively, these results expand our understanding of viral diversity in rice weeds. Our work will contribute to developing effective strategies with which to manage the spread and epidemiology of plant viruses.
43

Yang, Siwy Ling, Riccardo Delli Ponti, Yue Wan und Roland G. Huber. „Computational and Experimental Approaches to Study the RNA Secondary Structures of RNA Viruses“. Viruses 14, Nr. 8 (16.08.2022): 1795. http://dx.doi.org/10.3390/v14081795.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Most pandemics of recent decades can be traced to RNA viruses, including HIV, SARS, influenza, dengue, Zika, and SARS-CoV-2. These RNA viruses impose considerable social and economic burdens on our society, resulting in a high number of deaths and high treatment costs. As these RNA viruses utilize an RNA genome, which is important for different stages of the viral life cycle, including replication, translation, and packaging, studying how the genome folds is important to understand virus function. In this review, we summarize recent advances in computational and high-throughput RNA structure-mapping approaches and their use in understanding structures within RNA virus genomes. In particular, we focus on the genome structures of the dengue, Zika, and SARS-CoV-2 viruses due to recent significant outbreaks of these viruses around the world.
44

Boonrod, Kajohn, und Gabriele Krczal. „Inhibitions of Positive-Sense (ss) RNA Viruses RNA-Dependent RNA Polymerases“. Current Enzyme Inhibition 5, Nr. 4 (01.12.2009): 234–44. http://dx.doi.org/10.2174/157340809789630262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Nicholson, Beth L., und K. Andrew White. „Functional long-range RNA–RNA interactions in positive-strand RNA viruses“. Nature Reviews Microbiology 12, Nr. 7 (16.06.2014): 493–504. http://dx.doi.org/10.1038/nrmicro3288.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Swaminathan, Gokul, Julio Martin-Garcia und Sonia Navas-Martin. „RNA viruses and microRNAs: challenging discoveries for the 21st century“. Physiological Genomics 45, Nr. 22 (15.11.2013): 1035–48. http://dx.doi.org/10.1152/physiolgenomics.00112.2013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
RNA viruses represent the predominant cause of many clinically relevant viral diseases in humans. Among several evolutionary advantages acquired by RNA viruses, the ability to usurp host cellular machinery and evade antiviral immune responses is imperative. During the past decade, RNA interference mechanisms, especially microRNA (miRNA)-mediated regulation of cellular protein expression, have revolutionized our understanding of host-viral interactions. Although it is well established that several DNA viruses express miRNAs that play crucial roles in their pathogenesis, expression of miRNAs by RNA viruses remains controversial. However, modulation of the miRNA machinery by RNA viruses may confer multiple benefits for enhanced viral replication and survival in host cells. In this review, we discuss the current literature on RNA viruses that may encode miRNAs and the varied advantages of engineering RNA viruses to express miRNAs as potential vectors for gene therapy. In addition, we review how different families of RNA viruses can alter miRNA machinery for productive replication, evasion of antiviral immune responses, and prolonged survival. We underscore the need to further explore the complex interactions of RNA viruses with host miRNAs to augment our understanding of host-virus interplay.
47

Kolakofsky, Daniel. „A short biased history of RNA viruses“. RNA 21, Nr. 4 (16.03.2015): 667–69. http://dx.doi.org/10.1261/rna.049916.115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ortín, Juan, und Jaime Martín-Benito. „The RNA synthesis machinery of negative-stranded RNA viruses“. Virology 479-480 (Mai 2015): 532–44. http://dx.doi.org/10.1016/j.virol.2015.03.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Wang, Wenqing, Xianhong Wang, Chunyan Tu, Mengmeng Yang, Jun Xiang, Liping Wang, Ni Hong, Lifeng Zhai und Guoping Wang. „Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus“. Viruses 14, Nr. 11 (18.11.2022): 2552. http://dx.doi.org/10.3390/v14112552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (−ssRNA) viruses. In these viruses, five +ssRNA and four −ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel −ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
50

Bwalya, John, und Kook-Hyung Kim. „The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses“. Plant Pathology Journal 39, Nr. 1 (01.02.2023): 28–38. http://dx.doi.org/10.5423/ppj.rw.10.2022.0139.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host’s machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins’ role in replicating plant (+)ss RNA viruses.

Zur Bibliographie