Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RNA signature“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RNA signature" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RNA signature"
Liu, Jie, Wenmin Deng, Zhiwen Xiao, Xiaofeng Huang, Minmin Lin und Zhen Long. „Identification of RNA Modification-Associated Alternative Splicing Signature as an Independent Factor in Head and Neck Squamous Cell Carcinoma“. Journal of Immunology Research 2022 (13.09.2022): 1–19. http://dx.doi.org/10.1155/2022/8976179.
Der volle Inhalt der QuelleStupnikov, Alexey, Paul G. O’Reilly, Caitriona E. McInerney, Aideen C. Roddy, Philip D. Dunne, Alan Gilmore, Hayley P. Ellis et al. „Impact of Variable RNA-Sequencing Depth on Gene Expression Signatures and Target Compound Robustness: Case Study Examining Brain Tumor (Glioma) Disease Progression“. JCO Precision Oncology, Nr. 2 (November 2018): 1–17. http://dx.doi.org/10.1200/po.18.00014.
Der volle Inhalt der QuelleAlbitar, Maher, Sally Agersborg, Ahmad Charifa, Hong Zhang, Andrew Ip, Katherine Linder, Andrew L. Pecora, Jamie Koprivnikar, Andre Goy und James McCloskey. „Establishing Distinct Cytokine Signatures Differentiating between Acute Myeloid Leukemia, Myelodysplastic Syndrome, and Chip Using Bone Marrow RNA or Cell-Free RNA (cfRNA)“. Blood 144, Supplement 1 (05.11.2024): 4295. https://doi.org/10.1182/blood-2024-203870.
Der volle Inhalt der QuelleAl Mahi, Naim, Erik Y. Zhang, Susan Sherman, Jane J. Yu und Mario Medvedovic. „Connectivity Map Analysis of a Single-Cell RNA-Sequencing -Derived Transcriptional Signature of mTOR Signaling“. International Journal of Molecular Sciences 22, Nr. 9 (22.04.2021): 4371. http://dx.doi.org/10.3390/ijms22094371.
Der volle Inhalt der QuelleLu, Zhihao, Huan Chen, Shuang Li, Xi Jiao, Lihong Wu, Jianing Yu, Lin Shen und Henghui Zhang. „A RNA signature predicts outcomes in immune checkpoint blockade treated gastrointestinal cancer patients.“ Journal of Clinical Oncology 37, Nr. 15_suppl (20.05.2019): e14071-e14071. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14071.
Der volle Inhalt der QuelleLi, Chenyang, Thinh T. Nguyen, Jian-Rong Li, Xingzhi Song, Ignacio I. Wistuba, Andy Futureal, Jianhua Zhang et al. „Abstract 97: Multiregional profiling revealed intra-tumor transcriptomic heterogeneity associated with the prognosis in non-small cell lung cancer“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 97. http://dx.doi.org/10.1158/1538-7445.am2023-97.
Der volle Inhalt der QuelleWen, Huaming, Ryan A. Gallo, Xiaosheng Huang, Jiamin Cai, Shaoyi Mei, Ammad Ahmad Farooqi, Jun Zhao und Wensi Tao. „Incorporating Differential Gene Expression Analysis with Predictive Biomarkers to Identify Novel Therapeutic Drugs for Fuchs Endothelial Corneal Dystrophy“. Journal of Ophthalmology 2021 (28.06.2021): 1–8. http://dx.doi.org/10.1155/2021/5580595.
Der volle Inhalt der QuelleWang, Kang, Yajing Zhu, Ioannis Zerdes, Emmanouil Sifakis, Georgios Manikis, Dimitrios Salgkamis, Nikolaos Tsiknakis et al. „Abstract PO2-07-06: Multimodal learning predictor of HER2-positive breast cancer therapy response in the randomized PREDIX HER2 trial“. Cancer Research 84, Nr. 9_Supplement (02.05.2024): PO2–07–06—PO2–07–06. http://dx.doi.org/10.1158/1538-7445.sabcs23-po2-07-06.
Der volle Inhalt der QuelleErbe, Rossin, Michelle M. Stein, Tim A. Rand und Justin Guinney. „Abstract 2281: A tumor-intrinsic signature involving immunosuppression via MIF-CD74 signaling is associated with overall survival in ICT-treated lung adenocarcinoma“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 2281. http://dx.doi.org/10.1158/1538-7445.am2024-2281.
Der volle Inhalt der QuelleQiu, Lipeng, Tao Wang, Qi Ge, Han Xu, Yihang Wu, Qi Tang und Keping Chen. „Circular RNA Signature in Hepatocellular Carcinoma“. Journal of Cancer 10, Nr. 15 (2019): 3361–72. http://dx.doi.org/10.7150/jca.31243.
Der volle Inhalt der QuelleDissertationen zum Thema "RNA signature"
Mullani, Nowsheen. „An RNA Signature Links Oxidative Stress To Cellular Senescence“. Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS560.pdf.
Der volle Inhalt der QuelleOxidative Stress is one of the routes leading to cellular senescence. While the damages that reactive oxygen species inflict on proteins and DNA are well described, our insight on how transcription may participate in the onset of senescence is still limited. At a transcriptional level, oxidative stress results in accumulation of promoter RNAs (uaRNAs) and enhancer RNAs (eRNAs) as a consequence of defective release of the RNAPII from the chromatin a phenomenon known as RNAPII crawling. We observed that RNAPII crawling was also detected downstream of a small series of genes known to be regulated by HP1Υ at the level of their termination. Exploring this phenomenon yielded an unexpected result in the sense that it revealed an inhibiting effect of hydrogen peroxide on the RNA exosome complex involved in degradation of polyadenylated RNAs. The crawling RNAPII results in the transcription of ALU sequences located in the neighborhood of promoters and enhancers and downstream of intron-less genes and of small series of intron-containing genes. As ALU sequences contain genome encoded A tracts, they should normally be degraded by the RNA exosome. Yet, as oxidative stress also inhibits this RNAse activity, mRNAs containing serendipitously transcribed ALU sequences get stabilized and are detected in the cytoplasm and even polysome fractions. This phenomenon may participate in the onset of the interferon response associated with oxidative stress
Harling, Leanne. „Investigating the micro-RNA and metabolic signature of human postoperative atrial fibrillation“. Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/29130.
Der volle Inhalt der QuelleHossain, Mahmud. „Characterization of non-protein coding ribonucleic acids by their signature digestion products and mass spectrometry“. University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204947468.
Der volle Inhalt der QuelleHauenschild, Ralf [Verfasser]. „RNA-Seq and CoverageAnalyzer reveal sequence dependent reverse transcription signature of N-1-methyladenosine / Ralf Hauenschild“. Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1129476375/34.
Der volle Inhalt der QuelleYepmo, Mélissa. „Signature unique de l’ARN circulaire dans les muscles squelettiques humains de différentes sensibilités à l’insuline“. Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ109.
Der volle Inhalt der QuelleCircular RNAs are a class of non-coding RNAs characterized by a covalently closed loop structure. Functionally, they can act on cell physiology by inhibiting microRNAs and regulating gene and protein expression. The emerging function of circRNAs is not fully understood, but initial studies have recently shown that they are involved in the regulation of insulin secretion. In this work we tried to identify circRNAs in skeletal muscle at the level of glycolytic and oxidative fibers in healthy and type 2 diabetic patients. Our results showed a unique circular RNA signature not only as a function of status (healthy or T2DM) but also as a function of muscle fibre type (triceps or soleus). For the first time, our study has been able to identify a new way of regulating gene and protein expression independently of what is already known in skeletal muscle. These results allowed us to identify new key molecules involved in the development of type 2 diabetes, with the potential to identify new therapeutic targets
Panasenkava, Veranika. „Utilisation de cellules souches pluripotentes induites combinée à une approche transcriptomique pour améliorer le diagnostic moléculaire des troubles du neurodéveloppement chez l’homme“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENB060.
Der volle Inhalt der QuelleAbstract : Holoprosencephaly (HPE) is a rare disorder that affects the development of the midline of the forebrain during the earliest stages of embryogenesis, making molecular diagnosis challenging. It primarily results from genetic alterations that lead to a reduction in the activity of the Sonic Hedgehog (SHH) signaling pathway. However, a precise molecular diagnosis is only possible for 30% of patients, highlighting the importance of developing new diagnostic approaches. The main challenge is the inaccessibility of the primary tissue, specifically the anterior affected by HPE, namely the anterior neuroectoderm. To overcome this challenge, I established an in vitro model of anterior neuroectoderm using induced pluripotent stem cells. This model allowed me to generate transcriptomic data to assess the molecular impacts of SHH deficiency and define transcriptomic signatures that describe variations in SHH pathway activity, which may correlate with the severity of HPE phenotypes. This work also revealed new co-expressed and SHH-regulated genes, which could serve as new genetic markers for HPE. These advances pave the way for innovative diagnostic tools aimed at improving diagnostic accuracy for patients with HPE
Gendron, Judith. „Les longs ARN non codants, une nouvelle classe de régulateurs génomique tissu-spécifique : signature moléculaire spécifique des neurones dopaminergiques et sérotoninergiques“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066518.
Der volle Inhalt der QuelleOnly 1.2% of the genome codes for proteins; 98.8% is thus non-coding, despite 93% of the human genome being actively transcribed, mostly in long non-coding RNA (lncRNA).These lncRNA constitute a new class of genomic regulator capable of acting at all levels of gene expression and their expression is highly tissue-specific,modulated during the time and under normal/pathological conditions.Thus, we propose that each specified cell expresses a specific repertoire of lncRNA correlated to open/active chromatin regions specifying its cellular identity.In this context, we isolated by FACS 2neural types involved in many pathologies: i) human dopaminergic neurons (nDA) differentiated from hiPS and ii) DA and serotoninergic (n5-HT) neurons. From these 2neural types, we identified 1,363 lncRNA in nDA (among which 989 new, whether 73%) constituting the repertoire of nDA, and 1,257 lncRNA (among which 719 new) constituting the repertoire of n5-HT. Moreover,their comparison has shown that only 194 lncRNA are common to both neural types:thus the majority of lncRNA is expressed either in nDA or in n5-HT, indicating a high degree of cell-specificity.In addition, 39% of open chromatin regions, potentially regulatory, were also not detected in the n5-HT.Thus, we have generated DA and 5-HT specific catalogues of non-coding elements of the genome, which constitute DA and 5-HT specific molecular signatures, that could participate in deepening our knowledge regarding nDA or n5-HT development and dysfunctions. With this in mind,these DA specific elements have been compared with the SNP described as Parkinson Disease risk variants and candidate lncRNA were selected to perform studies of function
Castleberry, Colette M. „Quantitative Identification of Non-coding RNAs by Isotope Labeling and LC-MS/MS“. University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1258474676.
Der volle Inhalt der QuelleJebbawi, Fadi. „Etude des lymphocytes T régulateurs naturels CD8+CD25+: signature micro-ARN et effets des micro-ARNs sur l'expression de FOXP3, CTLA-4 et GARP“. Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209338.
Der volle Inhalt der QuelleNous avons purifié les CD8+CD25+ nTregs et vérifié par cytométrie de flux leur expression en FOXP3 et CTLA-4. Puis nous avons pu montrer que ces cellules possèdent des propriétés suppressives dans un test d’inhibition de la prolifération de lymphocytes T activés allogéniquement. Les lymphocytes CD8+CD25+ nTregs expriment les gènes FOXP3, CTLA-4, GARP et CCL-4 et les cytokines IL-10 et TGF-β. Par contre, les gènes CD28, ICOS, FOXO1 et Helios sont sous-exprimés dans les nTregs CD8+CD25+ par rapport aux lymphocytes T CD8+CD25-.
Nous avons établi une signature micro-ARN qui comprend 10 micro-ARNs différentiellement exprimés :7 micro-ARNs sous-exprimés "miR-9, -24, -31, -155, -210, -335 et -449 " et 3 micro-ARNs surexprimés " miR-214, -205 et -509". De plus, nous avons pu explorer la relevance biologique de cette signature micro-ARN en montrant dans un premier temps que les miRs "-31, -24, -210, -335" ciblent spécifiquement la région 3'UTR de FOXP3, de même les miR-9 et miR-155 ciblent la région 3'UTR de CTLA-4, et les miR-24, et -335 ciblent la région 3'UTR de GARP. Ceci a été fait par des expériences de co-transfections suivies d'une mesure de l'activité rapportrice luciférase. De plus, nous avons pu démontrer par des expériences de transduction lentivirale ex vivo, de cellules T primaires, que des micro-ARNs de la signature régulent l’expression de FOXP3, CTLA-4 et GARP dans les Tregs naturels CD8+CD25+ humains.
Cette étude montre l'importance des micro-ARNs dans la régulation post-transcriptionnelle des gènes impliqués dans la fonction régulatrice des lymphocytes T régulateurs.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Sousa, Rodrigo Guarischi Mattos Amaral de. „O transcritoma da retinopatia induzida por oxigênio e uma assinatura gênica prognóstica baseada em angiogênese para predição de recidiva de cancer de mama“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/95/95131/tde-28092017-112917/.
Der volle Inhalt der QuelleAngiogenesis is the process of formation of new blood vessels based on existing vessels. It is a vital process but many diseases also rely on this mechanism to get nourishment and progress. These so called angiogenesis-dependent diseases include cancers, retinopathies and macular degeneration. Some angiogenesis inhibitors were developed in the past decade, aiming to help the management of such diseases and improve patients quality of life. Most of these compounds work by inhibiting VEGFA/VEGFR2 binding, which is also a key element to the survival of quiescent endothelial cells; this may partly explain unanticipated adverse events observed in some clinical trials. We hypothesize that the improvement of anti-angiogenesis therapies hinges on a better and broader understanding of the process, especially when related to diseases\' progression. Using RNA-seq and a well accepted animal model of angiogenesis, the murine model of Oxygen Induced Retinopathy, we have explored the transcriptome landscape and identified 153 genes differentially expressed in angiogenesis. An extensive validation of several genes carried out by qRT-PCR and in-situ hybridization confirmed Esm1 overexpression in endothelial cells of tissues with active angiogenesis, providing confidence on the results obtained. Enrichment analysis of this gene list endorsed a narrow link of angiogenesis and frequently mutated genes in tumours, consistent with the known connection between cancer and angiogenesis, and provided suggestions of already approved drugs that may be repurposed to control angiogenesis under pathological circumstances. Finally, based on this comprehensive landscape of angiogenesis, we were able to create a prognostic molecular biomarker for prediction of breast cancer relapse, with promising clinical applications. In summary, this work successfully unveiled angiogenesis-related genes, providing novel therapeutic alternatives, including potential drugs for repositioning. The set of differentially expressed genes is also a valuable resource for further investigations.
Bücher zum Thema "RNA signature"
Steele, E. J. Lamarck's signature: How retrogenes are changing Darwin's natural selection paradigm. Reading, Mass: Perseus Books, 1998.
Den vollen Inhalt der Quelle findenA, Lindley Robyn, und Blanden Robert V, Hrsg. Lamarck's signature: How retrogenes are changing Darwin's natural selection paradigm. St Leonards, NSW: Allen & Unwin, 1999.
Den vollen Inhalt der Quelle findenSchneier, Bruce. Cryptographie appliquée: Protocoles, algorithmes et codes sources en C. 2. Aufl. Paris: Vuibert, 2001.
Den vollen Inhalt der Quelle findenMartin, Keith M. Digital Signature Schemes. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788003.003.0007.
Der volle Inhalt der QuelleBuchteile zum Thema "RNA signature"
Vogg, Matthias Christian, und Brigitte Galliot. „Combining RNAi-Mediated β-Catenin Inhibition and Reaggregation to Study Hydra Whole-Body Regeneration“. In Methods in Molecular Biology, 635–47. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2172-1_34.
Der volle Inhalt der QuelleSchrauder, Michael G., und Reiner Strick. „From the Genetic Make-Up to the Molecular Signature of Non-Coding RNA in Breast Cancer“. In Nucleic Acids as Molecular Diagnostics, 129–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527672165.ch06.
Der volle Inhalt der QuelleBombaci, Mauro, Ivan Ferrari, Saveria Mazzara und Riccardo L. Rossi. „Refinement of Single-Cell RNA-seq Gene Expression Signatures with Combiroc“. In RNA Technologies, 61–74. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62178-9_3.
Der volle Inhalt der QuelleKatzenbeisser, Stefan. „RSA Signatures“. In Recent Advances in RSA Cryptography, 111–36. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1431-2_8.
Der volle Inhalt der QuelleMicali, Silvio, und Ronald L. Rivest. „Transitive Signature Schemes“. In Topics in Cryptology — CT-RSA 2002, 236–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45760-7_16.
Der volle Inhalt der QuelleJohnson, Robert, David Molnar, Dawn Song und David Wagner. „Homomorphic Signature Schemes“. In Topics in Cryptology — CT-RSA 2002, 244–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45760-7_17.
Der volle Inhalt der QuelleKomano, Yuichi, Kazuo Ohta, Atsushi Shimbo und Shinichi Kawamura. „Toward the Fair Anonymous Signatures: Deniable Ring Signatures“. In Topics in Cryptology – CT-RSA 2006, 174–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11605805_12.
Der volle Inhalt der QuelleBleichenbacher, Daniel. „Compressing Rabin Signatures“. In Topics in Cryptology – CT-RSA 2004, 126–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24660-2_10.
Der volle Inhalt der QuelleAguilar-Melchor, Carlos, Martin R. Albrecht, Thomas Bailleux, Nina Bindel, James Howe, Andreas Hülsing, David Joseph und Marc Manzano. „Batch Signatures, Revisited“. In Topics in Cryptology – CT-RSA 2024, 163–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58868-6_7.
Der volle Inhalt der QuellePointcheval, David, und Olivier Sanders. „Short Randomizable Signatures“. In Topics in Cryptology - CT-RSA 2016, 111–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29485-8_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RNA signature"
Gasparini, Pierluigi, Lorenza Landi, Stefania Carasi, Carmelo Tibaldi, Luciano Cascione, Greta Alì, Armida D'Incecco et al. „Abstract 3061: Micro-RNA signature differences in lung cancer patients withALKtranslocation,EGFRmutations andKRASmutations.“ In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3061.
Der volle Inhalt der QuelleGuerrero, Sergi, Rudolf Fehrmann und Marcel ATM van Vugt. „Abstract 1406: Towards an RNA expression-based signature for oncogene-induced replication stress“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-1406.
Der volle Inhalt der QuelleJang, Jin Sung. „Abstract 4354: Molecular signature of multiple myeloma progression through single-cell RNA-seq“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4354.
Der volle Inhalt der QuellePerik-Zavodskaia, O. Yu, R. Yu Perik-Zavodskii, Yu A. Shevchenko, M. S. Fisher, M. O. Volynets, S. Alrhmoun, K. V. Nazarov et al. „SINGLE СELL RNA SEQUENCING REVEALS TRANSCRIPTOMIC INSIGHTS OF NY-ESO-1 SPECIFIC TCR T-CELLS IN SK-MEL-37 MELANOMA MODEL“. In OpenBio-2023. ИПЦ НГУ, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-28.
Der volle Inhalt der QuelleSachs, Zohar, Rebecca S. LaRue, Klara Noble, Susan K. Rathe, Aaron L. Sarver, Ngoc A. Ha und David A. Largaespada. „Abstract B34: Single cell RNA sequencing identifies the NRASG12V-mediated AML self-renewal signature.“ In Abstracts: AACR Special Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; September 20-23, 2014; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.hemmal14-b34.
Der volle Inhalt der QuelleSahu, Divya, und Ajay Goel. „Abstract 650: Transcriptomic profiling identifies an enhancer RNA signature for recurrence prediction in colorectal cancer“. In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-650.
Der volle Inhalt der QuelleMarques, Michelle, David Simpson, Ron Chen, Dedeepya Vaka, Marcus Breese, Allayne Brunner, Rob West und Alejandro Sweet-Cordero. „Abstract A31: The long noncoding RNA lnc277 mediates a repressive gene signature in Ewing's sarcoma“. In Abstracts: AACR Special Conference: Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; November 3-6, 2013; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.pedcan-a31.
Der volle Inhalt der Quellereddy, Karthik reddy kami, Balasubramanyam Karanam, Cristian Coarfa, Yair Lotan, Roni J. Bollag, Martha K. Terris und Nagireddy Putluri. „Abstract 4501: RNA seq analysis reveals altered immune specific gene signature in African American bladder cancer“. In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4501.
Der volle Inhalt der QuellePruneri, Giancarlo, Vincenzo Bagnardi, Davide Disalvatore, Giuseppe Curigliano, Nicole Rotmensz, Carmen Criscitiello, Darl D. Flake II et al. „Abstract P4-11-15: Risk stratification within luminal B breast cancer using a second generation prognostic RNA signature“. In Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 9-13, 2014; San Antonio, TX. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.sabcs14-p4-11-15.
Der volle Inhalt der QuelleVaradan, Vinay, Kristy Miskimen, Sitharthan Kamalakaran, Angel Janevski, Nilanjana Banerjee, Nicole Williams, Maysa Abu-Khalaf, William Sikov, Nevenka Dimitrova und Lyndsay Harris. „Abstract 4566: RNA-seq identifies a TGF-β signature that predicts response to preoperative bevacizumab in breast cancer.“ In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4566.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RNA signature"
Liao, Dezhong. RNA Chimeras as a Gene Signature of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ada612049.
Der volle Inhalt der QuelleLiao, D. J. RNA Chimeras as a Gene Signature of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Mai 2013. http://dx.doi.org/10.21236/ada582144.
Der volle Inhalt der QuelleBar-Joseph, Moshe, William O. Dawson und Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Der volle Inhalt der QuelleDenis, F., F. Jacobs und C. A. Wood. RSA Blind Signatures. RFC Editor, Oktober 2023. http://dx.doi.org/10.17487/rfc9474.
Der volle Inhalt der QuelleCrowley, David E., Dror Minz und Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, Juli 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Der volle Inhalt der QuelleBlaze, M., J. Ioannidis und A. Keromytis. DSA and RSA Key and Signature Encoding for the KeyNote Trust Management System. RFC Editor, März 2000. http://dx.doi.org/10.17487/rfc2792.
Der volle Inhalt der QuelleAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, Juni 2021. http://dx.doi.org/10.18235/0003313.
Der volle Inhalt der QuellePHILLIPS, DANIEL, WENBIN GUO und RUNXUAN ZHANG. Analysis of Multiple Years of RNA-Seq Data Using the 3D-RNA-Seq Application Reveals Seasonal Signatures of Differential Gene and Transcript-Level Expression, Alternative-Splicing, and Transcript... Journal of Young Investigators, August 2021. http://dx.doi.org/10.22186/jyi.40.8.9-22.
Der volle Inhalt der QuelleWeis, B. The Use of RSA/SHA-1 Signatures within Encapsulating Security Payload (ESP) and Authentication Header (AH). RFC Editor, Januar 2006. http://dx.doi.org/10.17487/rfc4359.
Der volle Inhalt der QuelleSury, O. Use of the SHA-256 Algorithm with RSA, Digital Signature Algorithm (DSA), and Elliptic Curve DSA (ECDSA) in SSHFP Resource Records. RFC Editor, April 2012. http://dx.doi.org/10.17487/rfc6594.
Der volle Inhalt der Quelle