Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RNA: DNA hybrides“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RNA: DNA hybrides" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RNA: DNA hybrides"
Yang, Xuan, Binyuan Zhai, Shunxin Wang, Xiangfei Kong, Yingjin Tan, Lin Liu, Xiao Yang, Taicong Tan, Shuxian Zhang und Liangran Zhang. „RNA-DNA hybrids regulate meiotic recombination“. Cell Reports 37, Nr. 10 (Dezember 2021): 110097. http://dx.doi.org/10.1016/j.celrep.2021.110097.
Der volle Inhalt der QuelleKamath-Loeb, Ashwini S., Amnon Hizi, John Tabone, Marjorie S. Solomon und Lawrence A. Loeb. „Inefficient Repair of RNA . DNA Hybrids“. European Journal of Biochemistry 250, Nr. 2 (Dezember 1997): 492–501. http://dx.doi.org/10.1111/j.1432-1033.1997.0492a.x.
Der volle Inhalt der QuelleWaldron, Denise. „RNA–DNA hybrids: double-edged swords“. Nature Reviews Genetics 18, Nr. 1 (21.11.2016): 3. http://dx.doi.org/10.1038/nrg.2016.153.
Der volle Inhalt der QuelleHall, Kathleen B. „NMR spectroscopy of DNA/RNA hybrids“. Current Opinion in Structural Biology 3, Nr. 3 (Juni 1993): 336–39. http://dx.doi.org/10.1016/s0959-440x(05)80103-4.
Der volle Inhalt der QuelleKim, Joung Sug, Junghyun Park, Jang Hyeon Choi, Seungjae Kang und Nokyoung Park. „RNA–DNA hybrid nano-materials for highly efficient and long lasting RNA interference effect“. RSC Advances 13, Nr. 5 (2023): 3139–46. http://dx.doi.org/10.1039/d2ra06249f.
Der volle Inhalt der QuelleDi, Lin, Yusi Fu, Yue Sun, Jie Li, Lu Liu, Jiacheng Yao, Guanbo Wang et al. „RNA sequencing by direct tagmentation of RNA/DNA hybrids“. Proceedings of the National Academy of Sciences 117, Nr. 6 (27.01.2020): 2886–93. http://dx.doi.org/10.1073/pnas.1919800117.
Der volle Inhalt der QuellePaull, Tanya T. „RNA–DNA hybrids and the convergence with DNA repair“. Critical Reviews in Biochemistry and Molecular Biology 54, Nr. 4 (04.07.2019): 371–84. http://dx.doi.org/10.1080/10409238.2019.1670131.
Der volle Inhalt der QuelleHuang, Yuegao, Congju Chen und Irina M. Russu. „Structural Energetics of Two RNA-DNA Hybrids“. Biophysical Journal 96, Nr. 3 (Februar 2009): 578a. http://dx.doi.org/10.1016/j.bpj.2008.12.3022.
Der volle Inhalt der QuelleVydzhak, Olga, Brian Luke und Natalie Schindler. „Non-coding RNAs at the Eukaryotic rDNA Locus: RNA–DNA Hybrids and Beyond“. Journal of Molecular Biology 432, Nr. 15 (Juli 2020): 4287–304. http://dx.doi.org/10.1016/j.jmb.2020.05.011.
Der volle Inhalt der QuelleAguilera, Andrés, und Belén Gómez-González. „DNA–RNA hybrids: the risks of DNA breakage during transcription“. Nature Structural & Molecular Biology 24, Nr. 5 (Mai 2017): 439–43. http://dx.doi.org/10.1038/nsmb.3395.
Der volle Inhalt der QuelleDissertationen zum Thema "RNA: DNA hybrides"
Cohen, Sarah. „Le rôle de senataxine dans la résolution des hybrides ARN : ADN aux cassures double brins de l'ADN“. Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30125.
Der volle Inhalt der QuelleActively transcribed genes can be the source of genome instability through numerous mechanisms. Those genes are characterized by the formation of secondary structures such as RNA-DNA hybrids. They are formed when nascent RNA exiting RNA polymerase II hybridizes single stranded DNA. Numerous studies have shown that RNA-DNA hybrids accumulation can lead to DNA damages. Among those damages, DNA double strand breaks (DSB) are the most deleterious for cells since they can generate mutations and chromosomal rearrangements. Two major repair mechanisms exist in the cell: Non-Homologous End-Joining (NHEJ) and Homologous recombination (HR). My lab showed recently that DSB occurring in transcribed genes are preferentially repaired by HR. Moreover, multiple studies have shown a cross talk between transcription and DSB repair. Those results led us to propose that actively transcribed genes could be repaired by a specific mechanism implicating proteins associated with transcription: "Transcription-coupled DSB repair". During my PhD, using the DIvA (DSB Induction via AsiSI) cell line allowing the induction of annotated DSB through the genome, I worked on 2 projects focusing on DSB repair in transcribed genes. First, we showed that DSB repair in transcribed loci requires a known RNA: DNA helicase: senataxin (SETX). After DSB induction in an active gene, SETX is recruited which allows RNA-DNA hybrid resolution (mapped by DRIP-seq). We also showed that SETX activity allows RAD51 loading and limits DSB illegitimate rejoining and consequently promotes cell survival after DSB induction. This study shows that DSB in transcribed loci require specific RNA-DNA hybrids removal by SETX for accurate repair. Second, we showed an interplay between SETX and Bloom (BLM) a G4 DNA helicase in DSB repair induced in transcribed loci. We showed that BLM is also recruited at DSB in transcribed loci where it promotes resection and repair fidelity. Strikingly, we showed that BLM depletion rescued the survival defects observed in SETX depleted cells following DSB induction. Knock down of other G4-helicases (RTEL1, FANCJ) also promoted cell survival in SETX depleted cells upon damage. Those data suggest an interplay between G4 helicases and RNA: DNA resolution for DSB repair in active genes. Altogether, these studies promote a better understanding of the specificity of DSB repair in transcriptionally active genes, and notably identification of proteins involved in "Transcription-coupled DSB repair"
Liu, Yaqun. „Study of transcription-replication conflict and its role in genomic instability and cancer development“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS083.
Der volle Inhalt der QuelleReplication and transcription machinery can cause transcription-replication conflicts (TRCs), which occur either frontally or co-directionally. The head-on collision is considered to be the most deleterious and can lead to genomic instability through R-loops that consist of a DNA-RNA hybrid and a displaced DNA strand. By analyzing multi-omics data, we successfully revealed that transient replication forks pause at the 3' of genes enriched in R-loops with more head-on collisions affects genomic stability in a Topoisomerase1-dependent manner (Nat. Commons . 2020) then I developed the first bioinformatics tool to analyze replication data (OKseqHMM, available on GitHub, Liu et al. BioRxiv. 2022). Finally, it has recently been shown that in breast cancer cells, R-loops strongly colocalize with an increase in DNA breaks, in a replication-dependent manner. We aim to study TRC in cancer cells and samples from cancer patients to determine how replicative stress induces genomic instability in cancer development, which may contribute to the establishment of new therapeutic strategies against cancer
D'ALESSANDRO, GIUSEPPINA. „THE ROLE OF RNA AND DNA:RNA HYBRIDS AT DNA DOUBLE-STRAND BREAKS“. Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/562552.
Der volle Inhalt der QuelleXiong, Yong. „X-Ray crystallographic studies on DNA, RNA hybrids and duplexes containing single bulges /“. The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488194825668504.
Der volle Inhalt der QuelleNovoa, Carolina. „RecQ-like helicase SGS1 counteracts DNA : RNA hybrid induced genome instability“. Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/60964.
Der volle Inhalt der QuelleScience, Faculty of
Graduate
Yang, Diya. „Genome-wide Analysis of F1 Hybrids to Determine the Initiation of Epigenetic Silencing in Maize“. Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1610098527086245.
Der volle Inhalt der QuelleLy, Danith. „Mechanism of electron transfer in double-stranded DNA and PNA-DNA hybrids, and the development of a fluorescence probe for DNA and RNA detection“. Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30485.
Der volle Inhalt der QuelleRigby, Rachel Elizabeth. „Ribonuclease H2, RNA:DNA hybrids and innate immunity“. Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/6509.
Der volle Inhalt der QuelleIslam, Mohammad Kaisarul. „Novel ligands targeting the DNA/RNA hybrid and telomeric quadruplex as potential anticancer agents“. Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/novel-ligands-targeting-the-dnarna-hybrid-and-telomeric-quadruplex-as-potential-anticancer-agents(ce8f3d0e-317d-4c2e-b64a-e13e283f7b95).html.
Der volle Inhalt der QuelleBeckedorff, Felipe César Ferrarezi. „Recrutamento do complexo repressivo polycomb 2 pelo RNA não codificador longo antissenso ANRASSF1 modula a expressão do gene RASSF1A e a proliferação celular“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-23042013-083641/.
Der volle Inhalt der QuelleTumor-suppressor RASSF1A gene down-regulation has been implicated in increasing cell proliferation in several tumors. Its expression is regulated by epigenetic events involving polycomb repressive complex 2 (PRC2), however the molecular mechanisms modulating recruitment of this epigenetic modifier to the locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand of RASSF1 gene in several cell lines and tissues, and binds to PRC2. ANRASSF1 is transcribed by RNA Polymerase II, 5\'-capped, polyadenylated, displays nuclear localization, and has on average a four-fold shorter half-life compared to other lncRNAs that bind PRC2. ANRASSF1 ectopic overexpression decreases RASSF1A abundance and increases the proliferation rate of HeLa cells, whereas its silencing causes opposite effects. These changes in NRASSF1 levels do not affect RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase both in PRC2 occupancy and in histone H3K27me3 repressive mark specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression is detected on PRC2 occupancy and on histone H3K27me3 at the promoter regions of RASSF1C and of four other neighbor genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrate that ANRASSF1 forms an RNA/DNA hybrid, and recruits SUZ12, a PRC2 component, to the RASSF1A promoter. Notably, depletion of ANRASSF1 disrupts SUZ12 occupancy on RASSF1A promoter as measured by RNAse-ChIP assay. Together, these results show a new mechanism of epigenetic repression of RASSF1A tumor suppressor gene involving an antisense unspliced lncRNA, in which ANRASSF1 selectively represses expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome may contribute to a location-specific epigenetic modulation of genes.
Buchteile zum Thema "RNA: DNA hybrides"
Martins, Angelica N., Weina Ke, Vaishnavi Jawahar, Morriah Striplin, Caryn Striplin, Eric O. Freed und Kirill A. Afonin. „Intracellular Reassociation of RNA–DNA Hybrids that Activates RNAi in HIV-Infected Cells“. In RNA Nanostructures, 269–83. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7138-1_18.
Der volle Inhalt der QuelleRolband, Lewis A., Weina Ke und Kirill A. Afonin. „Aptamer Conjugated RNA/DNA Hybrid Nanostructures Designed for Efficient Regulation of Blood Coagulation“. In RNA Nanostructures, 277–86. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3417-2_19.
Der volle Inhalt der QuelleGarcía-Rubio, María, Sonia I. Barroso und Andrés Aguilera. „Detection of DNA-RNA Hybrids In Vivo“. In Methods in Molecular Biology, 347–61. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7306-4_24.
Der volle Inhalt der QuelleWagner, Carolin B., und Brian Luke. „DNA–RNA Hybrids at Telomeres in Budding Yeast“. In R-Loops, 145–57. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_10.
Der volle Inhalt der QuelleWheelhouse, Richard T., und Jonathan B. Chaires. „Drug Binding to DNA⋅RNA Hybrid Structures“. In Methods in Molecular Biology, 55–70. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-418-0_4.
Der volle Inhalt der QuelleLane, D. J., und M. L. Collins. „Current Methods for Detection of DNA/Ribosomal RNA Hybrids“. In Rapid Methods and Automation in Microbiology and Immunology, 54–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76603-9_8.
Der volle Inhalt der QuelleAbakir, Abdulkadir, Fahad Alenezi und Alexey Ruzov. „Detecting and Mapping N6-Methyladenosine on RNA/DNA Hybrids“. In R-Loops, 329–44. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_22.
Der volle Inhalt der QuelleMajeed, Saadat, Muhammad Umer Farooq, Sayed Tayyab Raza Naqvi, Batool Fatima, Muhammad Najam-ul-Haq, Sabahat Majeed, Fahad Ali und Naeem Akhtar Khan. „MOF-based Electrochemical Sensors for DNA/RNA/ATP“. In Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring, 237–47. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003188148-25.
Der volle Inhalt der QuelleStarczak, Marta, Abdulkadir Abakir, Alexey Ruzov und Daniel Gackowski. „Detection and Quantification of RNA Modifications on RNA–DNA Hybrids Using SID-UPLC-MS/MS“. In R-Loops, 127–43. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_9.
Der volle Inhalt der QuelleSilva, Sónia, Cristina Guillén-Mendoza und Andrés Aguilera. „RNase H1 Hybrid-Binding Domain-Based Tools for Cellular Biology Studies of DNA–RNA Hybrids in Mammalian Cells“. In R-Loops, 115–25. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2477-7_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RNA: DNA hybrides"
Rajput, B., D. Alaimo, A. M. Asselbergs und E. Reich. „CONSTRUCTION AND EXPRESSION OF HYBRID PLASMINOGEN ACTIVATOR GENES“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644412.
Der volle Inhalt der QuelleMaciag, Anna E., Joseph E. Saavedra, Ryan J. Holland, Youseung Kim, Vandana Kumari, Christina E. Luthers, Waheed S. Sehareen, Xinhua Ji, Lucy M. Anderson und Larry K. Keefer. „Abstract 3334: GSTP1-activated nitric oxide-releasing/PARP inhibitor hybrid prodrugs induce cancer cell death through ROS/RNS, DNA damage, ER stress, and apoptosis.“ In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3334.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RNA: DNA hybrides"
Dugan, L. Elucidation of the Mechanism of Gene Silencing using Small Interferin RNA: DNA Hybrid Molecules. Office of Scientific and Technical Information (OSTI), Februar 2006. http://dx.doi.org/10.2172/900164.
Der volle Inhalt der QuelleBar-Joseph, Moshe, William O. Dawson und Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Der volle Inhalt der QuelleSink, Ken, Shamay Izhar und Abraham Nachmias. Asymmetric Somatic Hybridization: Developing a Gene Transfer System for Solanaceous Vegetable Crops. United States Department of Agriculture, Februar 1996. http://dx.doi.org/10.32747/1996.7613010.bard.
Der volle Inhalt der QuelleOstersetzer-Biran, Oren, und Jeffrey Mower. Novel strategies to induce male sterility and restore fertility in Brassicaceae crops. United States Department of Agriculture, Januar 2016. http://dx.doi.org/10.32747/2016.7604267.bard.
Der volle Inhalt der QuelleLevin, Ilan, John W. Scott, Moshe Lapidot und Moshe Reuveni. Fine mapping, functional analysis and pyramiding of genes controlling begomovirus resistance in tomato. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7594406.bard.
Der volle Inhalt der QuelleGrumet, Rebecca, und Benjamin Raccah. Identification of Potyviral Domains Controlling Systemic Infection, Host Range and Aphid Transmission. United States Department of Agriculture, Juli 2000. http://dx.doi.org/10.32747/2000.7695842.bard.
Der volle Inhalt der QuelleDawson, William O., und Moshe Bar-Joseph. Creating an Ally from an Adversary: Genetic Manipulation of Citrus Tristeza. United States Department of Agriculture, Januar 2004. http://dx.doi.org/10.32747/2004.7586540.bard.
Der volle Inhalt der Quelle