Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RNA-DNA FISH“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RNA-DNA FISH" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RNA-DNA FISH"
Greenberg, Eliraz, Hodaya Hochberg-Laufer, Shalev Blanga, Noa Kinor und Yaron Shav-Tal. „Cytoplasmic DNA can be detected by RNA fluorescence in situ hybridization“. Nucleic Acids Research 47, Nr. 18 (24.07.2019): e109-e109. http://dx.doi.org/10.1093/nar/gkz645.
Der volle Inhalt der QuelleFerguson, Moira M., und Roy G. Danzmann. „RNA/DNA ratios in white muscle as estimates of growth in rainbow trout held at different temperatures“. Canadian Journal of Zoology 68, Nr. 7 (01.07.1990): 1494–98. http://dx.doi.org/10.1139/z90-221.
Der volle Inhalt der QuelleLai, Lan-Tian, Pin Jie Lee und Li-Feng Zhang. „Immunofluorescence protects RNA signals in simultaneous RNA–DNA FISH“. Experimental Cell Research 319, Nr. 3 (Februar 2013): 46–55. http://dx.doi.org/10.1016/j.yexcr.2012.11.009.
Der volle Inhalt der QuelleLabh, Shyam Narayan. „RNA: DNA Ratio and Growth Performance of Rohu Labeo rohita (Hamilton) Fed Varied Proportion of Protein Diet during Intensive Aquaculture“. International Journal of Life Sciences 9, Nr. 6 (26.09.2015): 113–22. http://dx.doi.org/10.3126/ijls.v9i6.11585.
Der volle Inhalt der QuelleYan, Zhangming, Norman Huang, Weixin Wu, Weizhong Chen, Yiqun Jiang, Jingyao Chen, Xuerui Huang et al. „Genome-wide colocalization of RNA–DNA interactions and fusion RNA pairs“. Proceedings of the National Academy of Sciences 116, Nr. 8 (04.02.2019): 3328–37. http://dx.doi.org/10.1073/pnas.1819788116.
Der volle Inhalt der QuelleOgata, Motoyuki, Gosuke Hayashi, Anri Ichiu und Akimitsu Okamoto. „l-DNA-tagged fluorescence in situ hybridization for highly sensitive imaging of RNAs in single cells“. Organic & Biomolecular Chemistry 18, Nr. 40 (2020): 8084–88. http://dx.doi.org/10.1039/d0ob01635g.
Der volle Inhalt der QuelleChen, Feng, Min Bai, Xiaowen Cao, Yue Zhao, Jing Xue und Yongxi Zhao. „Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures“. Nucleic Acids Research 47, Nr. 22 (04.10.2019): e145-e145. http://dx.doi.org/10.1093/nar/gkz852.
Der volle Inhalt der QuelleStaeheli, P., Y. X. Yu, R. Grob und O. Haller. „A double-stranded RNA-inducible fish gene homologous to the murine influenza virus resistance gene Mx“. Molecular and Cellular Biology 9, Nr. 7 (Juli 1989): 3117–21. http://dx.doi.org/10.1128/mcb.9.7.3117-3121.1989.
Der volle Inhalt der QuelleRavikiran, K., und R. S. Kulkarni. „Nucleic Acid Content in Male Fresh Water Fish N. notopterus Exposed to Copper Sulphate“. International Letters of Natural Sciences 33 (Januar 2015): 1–8. http://dx.doi.org/10.18052/www.scipress.com/ilns.33.1.
Der volle Inhalt der QuelleStaeheli, P., Y. X. Yu, R. Grob und O. Haller. „A double-stranded RNA-inducible fish gene homologous to the murine influenza virus resistance gene Mx.“ Molecular and Cellular Biology 9, Nr. 7 (Juli 1989): 3117–21. http://dx.doi.org/10.1128/mcb.9.7.3117.
Der volle Inhalt der QuelleDissertationen zum Thema "RNA-DNA FISH"
Costa, Filho João. „Relações da taxa RNA/DNA e parâmetros morfológicos no crescimento de juvenis de robalo-flecha (Centropomus undecimalis) cultivados“. Universidade do Estado de Santa Catarina, 2013. http://tede.udesc.br/handle/handle/869.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The marine fish farming and culture of snook, Centropomus undecimalis, have good prospects for commercial development in Brazil. In this regard, there is a need to expand studies on the evaluation of growth on snook, which can be realized by morphological or biochemical methods. The nutritional status and growth of fish can be influenced by several factors and their interactions, including genetic and environmental conditions, such as diet, different temperatures and salinities. Morphological analysis allows an investigation of the biometric data obtained from the body dimensions which are analyzed based on a mathematical relationship through correlation and linear regression equation. Regarding the biochemical methods, the most used are the quantification of DNA, RNA, proteins and determination of the RNA/DNA, protein/DNA ratios. Once the cell metabolism is usually associated with the nutritional status of the organism higher amounts of these components indicate greater biochemical activity of cells and protein synthesis. The results from this study will provide useful information related to the biology and cultivation of snook, promoting the application of biometric analysis and promoting a jumpstart for the application of biochemical analysis, cellular metabolism involved in the culture snook
A piscicultura marinha e o cultivo do robalo-flecha possuem boas perspectivas para o desenvolvimento comercial no Brasil. Neste sentido, existe a necessidade da ampliação de estudos relacionados com a avaliação do crescimento em robalos, que pode ser realizado por métodos morfológicos ou bioquímicos. A condição nutricional e o crescimento dos peixes podem ser influenciados por vários fatores e suas interações, incluindo a genética e as condições ambientais, como a alimentação, diferentes temperaturas e salinidades. A análise morfológica permite uma investigação das características biométricas, obtidas por meio das dimensões corporais, com base na sua relação matemática pela correlação e equação de regressão linear. Em relação aos métodos bioquímicos, os mais utilizados são a quantificação do DNA, RNA, proteínas e determinação das razões RNA/DNA, proteína/DNA. Uma vez que o metabolismo celular normalmente está relacionado com a situação nutricional do organismo, maiores quantidades desses componentes indicam maior atividade bioquímica das células e síntese proteica. Os resultados deste estudo permitem incrementar informações relacionadas à biologia e ao cultivo dos robalos aperfeiçoando a aplicação das análises biométricas e promovendo um salto inicial para a aplicação de análises bioquímicas, envolvidas com o metabolismo celular, no cultivo do robalo-flecha
Gimenez, Octavio Manuel Palacios [UNESP]. „Padrões de evolução de sistemas de cromossomos sexuais em grilos: uma abordagem integrada entre citogenética e genômica“. Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152458.
Der volle Inhalt der QuelleApproved for entry into archive by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br) on 2018-01-10T18:40:10Z (GMT) No. of bitstreams: 1 gimenez_omp_dr_rcla.pdf: 25788766 bytes, checksum: da0e0599de64bcf81bfb8ddceda0c8e7 (MD5)
Made available in DSpace on 2018-01-10T18:40:10Z (GMT). No. of bitstreams: 1 gimenez_omp_dr_rcla.pdf: 25788766 bytes, checksum: da0e0599de64bcf81bfb8ddceda0c8e7 (MD5) Previous issue date: 2017-12-12
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Os cromossomos sexuais se originam independentemente de um par de homólogos autossômicos e em várias linhagens apresentam características comuns, tais como acúmulo de vários tipos de DNA repetitivo, restrição da recombinação e perda ou ganho de genes devido á diferenciação morfológica e genética entre os cromossomos sexuais X e Y ou Z e W. Estas características representam um exemplo fascinante de convergência evolutiva. Em Orthoptera, o sistema cromossômico sexual comumente encontrado na maioria das espécies estudadas é do tipo X0♂/XX♀. Entretanto, sistemas cromossômicos sexuais derivados dos tipos neo-XY♂/XX♀ e neo- X1X2Y♂/X1X1X2X2♀ são também observados, surgindo repetidamente por fusões cêntricas e em tandem, inversões e dissociações envolvendo cromossomos sexuais ancestrais e autossomos. O presente trabalho teve três objetivos. Primeiro, entender o possível papel dos DNAs repetitivos na estrutura/diversificação dos cromossomos sexuais simples e derivados, a partir do isolamento e mapeamento físico de sequências, tais como, famílias multigênicas, DNA satélite (DNAsat) e microssatélites, nas espécies Gryllus assimilis, Cycloptiloides americanus e Eneoptera surinamensis. Segundo, testar e comparar transcrição diferencial de DNAsat entre diferentes tecidos, sexos e espécies a partir de transcriptomas de Gryllus assimilis, G. bimaculatus, G. firmus e G. rubens, com o objetivo de entender os possíveis papéis funcionais destas sequências na regulação gênica, modulação da cromatina e como componentes funcionais de importantes estruturas como telômeros, centrômeros e cromossomos sexuais. Terceiro, a partir de transcriptomas de espécies de grilos (Gryllus assimilis, G. bimaculatus e G. firmus) prospectar genes codificadores de proteínas relacionados com a determinação sexual, envolvidos com o fitness reprodutivo e genes enviesados do sexo, responsáveis pelas diferenças fenotípicas entre machos e fêmeas, e tentar elucidar de uma maneira comparativa os fatores evolutivos atuando nestes loci. Origem de novo de cromossomos sexuais mediante rearranjos cromossômicos, assim como acúmulo de DNA repetitivo que levaram a diferenciação entre cromossomos sexuais são relatados em C. americanus (X1X20) e E. surianmensis (neo-X1X2Y). Estas características observadas em grilos representam outro caso notável de convergência evolutiva devido os cromossomos sexuais não relacionados compartilharem muitas propriedades entre táxons distantes. Acúmulo surpreendente de loci de DNAsat foi encontrado no neo-Y altamente diferenciado de E. surinamensis, incluindo 39 DNAsat representados em excesso neste cromossomo, que é a maior diversidade de DNAsat até agora relatada para cromossomos sexuais. Foi documentado que, particularmente os DNAsat, contribuíram grandemente para o aumento de tamanho genômico entre G. assimilis e E. surinamensis. Um achado interessante foi a identificação de DNAsat conservados entre espécies de grilos (Gryllus assimilis, G. bimaculatus e G. firmus), mas transcritos diferencialmente. Os dados relativos à presença de DNAsat no genoma de G. assimilis foram discutidos em um contexto evolutivo, com dados transcricionais permitindo comparações entre os sexos e entre os tecidos quando possível. Foram discutidas hipóteses para a conservação e transcrição de DNAsat em Gryllus, que podem resultar do seu papel na diferenciação sexual no nível da cromatina, na formação da heterocromatina e na função centromérica. Outra descoberta foi a identificação de genes determinantes do sexo e outros genes relacionados ao fitness reprodutivo, como a biossíntese de hormônios de insetos e ritmo circadiano entre espécies de Gryllus. Os efetores e os alvos downstream das vias de determinação do sexo foram previamente identificados em outros insetos, mas nunca em Orthoptera. Usando G. assimilis como modelo para estudar genes enviesados do sexo foi possível identificar um conjunto de genes altamente expressos que podem explicar diferenças fenotípicas entre os sexos. Estimou-se que os genes codificadores de proteínas relacionadas com a diferenciação sexual e com o fitness reprodutivo evoluem mais rapidamente do que os genes não reprodutivos (genes housekeeping) como resultado de uma forte seleção positiva nos primeiros. Além disso, foi encontrado que as espécies estudadas apresentam níveis excepcionalmente elevados de duplicações gênicas. As descobertas sugerem que as duplicações gênicas podem desempenhar um papel na expressão de genes enviesados do sexo no grilo de campo G. assimilis, uma espécie que no futuro provavelmente irá fornecer informações sobre genômica funcional e epigenética da determinação do sexo.
Sex chromosomes have arisen independently from an ordinary autosomal pair and in several lineages they present common characteristics, such as accumulation of distinct classes of repetitive DNAs, restriction of the recombination and loss or gain of genes due to the morphological and genetic differentiation between the sexual chromosomes X and Y or Z and W. These characteristics represent a fascinating example of evolutionary convergence. In Orthoptera, the X0♂/XX♀ sex-determining system is considered modal but eventually, diverse sex chromosome systems evolved several times, such as neo-XY♂/XX♀, X1X20♂/X1X1X2X2♀ and even neo- X1X2Y♂/X1X1X2X2♀. It was found that particularly centric fusions (i.e., Robertsonian translocations) and tandem fusions with autosomes, dissociations and inversions contributed to the formation of neo-sex chromosomes in Orthoptera. The present work had three objectives. First, get insights of the role of repetitive DNAs in the structure/diversification of simple and derivative sex-chromosomes by isolation and physical mapping of repetitive DNA sequences, such as multigene families, satellite DNA (satDNA) and microsatellites using Gryllus assimilis, Cycloptiloides americanus e Eneoptera surinamensis, as models. Second, looking at differential satDNA transcription between different tissues, sexes, and species from transcriptomes of Gryllus assimilis, G. bimaculatus, G. firmus and G. rubens, I tried to understand the possible functional roles of these sequences in gene regulation, chromatin modulation and as functional components of important structures such as telomeres, centromeres and sex chromosomes. Third, using transcriptomes from cricket species (Gryllus assimilis, G. bimaculatus and G. firmus), I searched for genes encoding proteins related to sexual determination, reproductive fitness and sex-biased genes which are responsible for the phenotypic differences between males and females. I also tried to elucidate in a comparative way the evolutionary factors acting at these loci. De novo origin of sex chromosomes by chromosomal rearrangements, as well as repetitive DNA accumulation that led to the differentiation between sex chromosomes are reported for C. americanus (X1X20) e E. surianmensis (neo-X1X2Y). These features observed in crickets represent another remarkable case of evolutionary convergence because unrelated sex chromosomes share many common properties among distant taxa. Especially astonishing accumulation of satDNAs loci was found in the highly differentiated neo-Y, including 39 satDNAs over-represented in this chromosome, which is the greatest satDNAs diversity yet reported for sex chromosomes. It has been documented that, particularly the satDNA, contributed greatly to the increase in genomic size between G. assimilis and E. surinamensis. An interesting finding was the identification of satDNA conserved among species of crickets (Gryllus assimilis, G. bimaculatus and G. firmus), but differentially transcribed. The data regarding satDNA presence in G. assimilis genome was discussed in an evolutionary context, with transcriptional data enabling comparisons between sexes and across tissues when possible. I discussed hypotheses for the conservation and transcription of satDNAs in Gryllus, which might result from their role in sexual differentiation at the chromatin level, heterochromatin formation, and centromeric function. Another finding was the identification of sex-determining genes and other genes related to reproductive fitness, such as biosynthesis of insect hormones and circadian rhythm among Gryllus species. The effectors as well as downstream targets of sex-determination pathways have been previously identified in other insects but never in Orthoptera. Using G. assimilis to study sex-biased genes I identified a set of highly expressed genes that might account for phenotypic differences between sexes. Furthermore, I estimated that proteinencoding reproductive genes evolve faster than non-reproductive genes as result of strong positive selection at those loci. It was documented that the species studied harbor exceptionally high levels of gene duplications. The findings suggest that gene duplications may play a role in sex-biased genes expression in the field cricket G. assimilis, a species likely to yield insights into the functional genomics and epigenetics of sex determination.
FAPESP: 2014/02038-8
Papucci, Chiara. „Study of position effect as a mechanism arising from chromosomal translocations in leukaemia“. Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/11583.
Der volle Inhalt der QuelleKerlin, Maciej. „Gene coregulation in cis within the 3D genome – A single-molecule imaging study“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS124.
Der volle Inhalt der QuelleThe eukaryotic genome is highly organized in both space and sequence. From entire chromosomes to individual genes the 3D organization of the genome is linked to transcription and many regulatory mechanisms likely coexist at different scales. At the sub-megabase scale, the genome is physically organized into self-interacting topologically associating domains (TADs) that are thought to constrain the range of action of gene regulatory elements called ‘enhancers’. Current data suggest that TADs serve as ‘regulatory units’ to coregulate multiple genes by exposing them to the same enhancers. Genes from the same TAD indeed often display correlated expression across different tissues and cell types. Interestingly, correlated expression is seen between functionally related genes. However, how 3D organization at an individual locus plays a mechanistic role in coregulating functionally related genes is unknown. Using single-molecule imaging, I observed in single cells the spatial positions and transcription of three adjacent functionally related genes regulated by the same/different enhancers. I used estrogen stimulation in MCF7 cells as a model system to study hormone-responsive genes and enhancers. Using combined RNA-DNA FISH, I measured the coupling between genes as the correlation in cis of their transcription. I found, that stimulation with estrogen increases the correlation in cis between genes belonging to the same TAD. Perturbation of the TAD boundary revealed the contribution of contact insulation to gene coregulation. Together, this work lays the ground towards an understanding of how enhancers and genes communicate and coordinate their activity within the 3D genome
Adamson, Eleanor A. S. „Influence of historical landscapes, drainage evolution and ecological traits on patterns of genetic diversity in Southeast Asian freshwater snakehead fishes“. Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/39612/1/Eleanor_Adamson_Thesis.pdf.
Der volle Inhalt der QuelleTrovato, Fabio. „Molecular Dynamics Simulations of biopolymers within the cell environment: Minimalist models for the Nucleic Acids and Green Fluorescent Proteins in the cytoplasm“. Doctoral thesis, Scuola Normale Superiore, 2013. http://hdl.handle.net/11384/85896.
Der volle Inhalt der QuelleFox, Samuel E. „Transcriptomic analysis using high-throughput sequencing and DNA microarrays“. Thesis, 2011. http://hdl.handle.net/1957/23741.
Der volle Inhalt der QuelleGraduation date: 2012
Access restricted to the OSU Community at author's request from Oct. 5, 2011 - April 5, 2012.
Buchteile zum Thema "RNA-DNA FISH"
Lai, Lan-Tian, Zhenyu Meng, Fangwei Shao und Li-Feng Zhang. „Simultaneous RNA–DNA FISH“. In Long Non-Coding RNAs, 135–45. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_11.
Der volle Inhalt der QuelleLai, Lan-Tian, Zhenyu Meng, Fangwei Shao und Li-Feng Zhang. „Simultaneous RNA-DNA FISH“. In Long Non-Coding RNAs, 111–21. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1697-0_11.
Der volle Inhalt der QuelleGuioli, Silvana, und Robin Lovell-Badge. „RNA FISH, DNA FISH and Chromosome Painting of Chicken Oocytes“. In Methods in Molecular Biology, 191–208. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3795-0_14.
Der volle Inhalt der QuelleSen, Souvik, Shivnarayan Dhuppar und Aprotim Mazumder. „Combined 3D DNA FISH, Single-Molecule RNA FISH, and Immunofluorescence“. In Methods in Molecular Biology, 203–14. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3766-1_14.
Der volle Inhalt der QuelleMagaraki, Aristea, Agnese Loda, Joost Gribnau und Willy M. Baarends. „Simultaneous RNA–DNA FISH in Mouse Preimplantation Embryos“. In Methods in Molecular Biology, 131–47. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8766-5_11.
Der volle Inhalt der QuelleOkamoto, Ikuhiro. „Combined Immunofluorescence, RNA FISH, and DNA FISH in Preimplantation Mouse Embryos“. In Methods in Molecular Biology, 149–59. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8766-5_12.
Der volle Inhalt der QuellePei, Lei, und Markus Schmidt. „Containment strategies for synthetic gene drive organisms and impacts on gene flow.“ In Gene flow: monitoring, modeling and mitigation, 137–52. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247480.0010.
Der volle Inhalt der QuellePollex, Tim, Tristan Piolot und Edith Heard. „Live-Cell Imaging Combined with Immunofluorescence, RNA, or DNA FISH to Study the Nuclear Dynamics and Expression of the X-Inactivation Center“. In Imaging Gene Expression, 13–31. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-526-2_2.
Der volle Inhalt der QuelleSolovei, I., J. Walter, M. Cremer, F. Habermann, L. Schermelleh und T. Cremer. „FISH on three-dimensionally preserved nuclei“. In Fish, 119–57. Oxford University PressOxford, 2002. http://dx.doi.org/10.1093/oso/9780199638833.003.0007.
Der volle Inhalt der QuelleWang, Qiuyu, Nessar Ahmed und Chris Smith. „Molecular biology techniques“. In Biomedical Science Practice. Oxford University Press, 2022. http://dx.doi.org/10.1093/hesc/9780198831228.003.0014.
Der volle Inhalt der Quelle