Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „River metabolism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "River metabolism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "River metabolism"
Yates, Adam G., Robert B. Brua, Joseph M. Culp, Roger G. Young und Patricia A. Chambers. „Variation in stream metabolism and benthic invertebrate composition along longitudinal profiles of two contrasting river systems“. Canadian Journal of Fisheries and Aquatic Sciences 75, Nr. 4 (April 2018): 549–59. http://dx.doi.org/10.1139/cjfas-2016-0198.
Der volle Inhalt der QuelleRen, Ze, Xiaodong Qu, Wenqi Peng, Yang Yu und Min Zhang. „Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China“. PeerJ 7 (12.07.2019): e7318. http://dx.doi.org/10.7717/peerj.7318.
Der volle Inhalt der QuelleKupilas, Benjamin, Daniel Hering, Armin W. Lorenz, Christoph Knuth und Björn Gücker. „Hydromorphological restoration stimulates river ecosystem metabolism“. Biogeosciences 14, Nr. 7 (12.04.2017): 1989–2002. http://dx.doi.org/10.5194/bg-14-1989-2017.
Der volle Inhalt der QuelleChowanski, Kurt, Lisa Kunza, Gregory Hoffman, Laurel Genzoli und Emily Stickney. „River management alters ecosystem metabolism in a large oligotrophic river“. Freshwater Science 39, Nr. 3 (01.09.2020): 534–48. http://dx.doi.org/10.1086/710082.
Der volle Inhalt der QuelleChen, Yanhua. „River ecosystem metabolism and carbon cycling“. Nature Water 1, Nr. 3 (21.03.2023): 224. http://dx.doi.org/10.1038/s44221-023-00060-1.
Der volle Inhalt der QuelleFellows, C. S., M. L. Wos, P. C. Pollard und S. E. Bunn. „Ecosystem metabolism in a dryland river waterhole“. Marine and Freshwater Research 58, Nr. 3 (2007): 250. http://dx.doi.org/10.1071/mf06142.
Der volle Inhalt der QuelleKaraseva, N. P., N. N. Rimskaya-Korsakova, V. N. Kokarev, M. I. Simakov, R. V. Smirnov, M. M. Gantsevich und V. V. Malakhov. „DISCOVERY OF SIBOGLINIDS (ANNELIDA, SIBOGLINIDAE) IN THE ESTUARIES OF THE LARGEST ARCTIC RIVERS ARE ASSOCIATED WITH PERMAFROST GAS HYDRATES“. Доклады Российской академии наук. Науки о жизни 509, Nr. 1 (01.03.2023): 133–36. http://dx.doi.org/10.31857/s2686738922600832.
Der volle Inhalt der QuelleRodríguez-Castillo, Tamara, Edurne Estévez, Alexia María González-Ferreras und José Barquín. „Estimating Ecosystem Metabolism to Entire River Networks“. Ecosystems 22, Nr. 4 (22.10.2018): 892–911. http://dx.doi.org/10.1007/s10021-018-0311-8.
Der volle Inhalt der QuelleCook, Robert A., Ben Gawne, Rochelle Petrie, Darren S. Baldwin, Gavin N. Rees, Daryl L. Nielsen und Nathan S. P. Ning. „River metabolism and carbon dynamics in response to flooding in a lowland river“. Marine and Freshwater Research 66, Nr. 10 (2015): 919. http://dx.doi.org/10.1071/mf14199.
Der volle Inhalt der QuelleLipschultz, Fredric, Steven C. Wofsy und Lewis E. Fox. „Nitrogen metabolism of the eutrophic Delaware River ecosystem1“. Limnology and Oceanography 31, Nr. 4 (Juli 1986): 701–16. http://dx.doi.org/10.4319/lo.1986.31.4.0701.
Der volle Inhalt der QuelleDissertationen zum Thema "River metabolism"
Woodward, Kenneth Benjamin. „The Storage, Mobilisation and Metabolism of Soil Nutrients and Carbon in an Australian Lowland River“. Thesis, Griffith University, 2015. http://hdl.handle.net/10072/366245.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Chénier, Martin. „Impact of seasonal variations, nutrients, pollutants and dissolved oxygen on the microbial composition and activity of river biofilms“. Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85144.
Der volle Inhalt der QuelleThe seasonal pattern in nitrification, denitrification and hexadecane mineralization, and in the occurrence of nirK in the South Saskatchewan River biofilms was: fall greater than winter, which was equivalent to spring. Hexadecane mineralization was higher in fall 1999 than in fall 2001, denitrification was similar in these two years, and no seasonal pattern of nitrification was observed.
The addition of combined nutrients (C, N, and P) resulted in significant increases in the measured bacterial activities and in the predominance of alkB, nirS and nirK in all seasons and years. The addition of individual nutrients did not stimulate hexadecane mineralization, denitrification, and the PCR amplification of nirS and nirK. In fall 1999, CNP and, to a lesser extent P, stimulated nitrification, whereas in fall 2001, no pattern was observed. The results showed that nutrients, especially P, were limiting for bacterial activities, and that the biofilm activities and composition varied with nutrient availability and time of year.
At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification to similar extents in both years, had a negative impact on nitrification and hexadecane mineralization in fall 1999, and a positive impact on these two latter activities in fall 2001. Nickel (0.5 mg liter-1 ) negatively affected denitrification but had no effect on hexadecane mineralization. The alkB and nirS genes were less predominant and absent, respectively, in biofilms grown in the presence of nickel. DGGE analyses indicated that nickel reduced the biofilm bacterial diversity.
The results presented herein provide much needed information on the microbial ecology of river biofilms, and on the impact and interactive effects of pollutant and nutrient inputs on these biofilms. These results and the techniques used in this project can be applied to monitor environmental effects of anthropogenic activities on aquatic biofilms, and can contribute to establish or revise environmental regulations.
Koch, Gregory R. „Dynamics of Ecosystem Metabolism and Flocculent Detritus Transport in Estuarine Taylor River“. FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/680.
Der volle Inhalt der QuelleClinton, Sandra Mae. „Microbial metabolism, enzyme activity and production in the hyporheic zone of a floodplain river /“. Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5560.
Der volle Inhalt der QuelleKupilas, Benjamin [Verfasser], und Daniel [Akademischer Betreuer] Hering. „Effects of river restoration on ecosystem metabolism and trophic relationships / Benjamin Kupilas ; Betreuer: Daniel Hering“. Duisburg, 2017. http://d-nb.info/1137466634/34.
Der volle Inhalt der QuelleTreadwell, Simon Andrew 1968. „Patterns in community metabolism and biomass of biofilms colonising large woody debris along an Australian lowland river“. Monash University, Dept. of Biological Sciences, 2002. http://arrow.monash.edu.au/hdl/1959.1/5605.
Der volle Inhalt der QuelleHamblen, Jennifer M. „Spatial And Temporal Trends In Sediment Dynamics And Potential Aerobic Microbial Metabolism, Upper San Pedro River, Southeastern Arizona“. Thesis, The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_etd_hy0216_sip1_w.pdf&type=application/pdf.
Der volle Inhalt der QuelleMelo, Michaela Ladeira de. „O papel ecológico das bactérias planctônicas para a dinâmica da matéria orgânica na zona de confluência dos Rios Negro e Solimões (AM)“. Universidade Federal de Juiz de Fora, 2002. https://repositorio.ufjf.br/jspui/handle/ufjf/73.
Der volle Inhalt der QuelleApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2015-12-03T11:29:39Z (GMT) No. of bitstreams: 1 michaelaladeirademelo.pdf: 987332 bytes, checksum: b090c8cbfcdee51ae5a4874c6a656f2a (MD5)
Made available in DSpace on 2015-12-03T11:29:39Z (GMT). No. of bitstreams: 1 michaelaladeirademelo.pdf: 987332 bytes, checksum: b090c8cbfcdee51ae5a4874c6a656f2a (MD5) Previous issue date: 2015-02-20
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
Com o objeto de avaliar o papel do metabolismo bacteriano para a dinâmica da matéria orgânica (MO) na região de confluência dos rios Negro e Solimões, foram estimadas em escala espacial: o metabolismo bacteriano - produção bacteriana (PB), respiração bacteriana (RB), demanda bacteriana de carbono (DBC) e eficiência de crescimento bacteriana (ECB), além de variáveis físicas e químicas, como nutrientes inorgânicos, carbono orgânico dissolvido (COD), razões estequiométricas dos nutrientes, condutividade elétrica e turbidez. Um experimento foi realizado para estimar a contribuição do metabolismo bacteriano e dos processos de adsorção da MO para o decaimento de COD na região de mistura das águas. As taxas metabólicas apresentaram variabilidade longitudinal e lateral ao longo da região de confluência dos rios Negro e Solimões, entretanto, não foi observado incremento das taxas metabólicas com o aumento da mistura das águas em condições in situ. A PB variou de 0,03 a 0,56 μgC L-1 h-1 e a RB de 38,8 a 78,73 μgC L-1 h-1, refletindo em baixos valores de ECB, em média 0,236%, ou seja, as bactérias heterotróficas alocam a maior parte da MO disponível para os processos catabólicos das células, o que resulta na rápida remineralização de carbono e nutrientes nestes sistemas. De uma maneira geral, os nutrientes e a qualidade e quantidade da MO parecem ter sido os fatores com maior influência sobre o metabolismo bacteriano na região estudada. O metabolismo bacteriano mostrou-se como principal componente para o decaimento de carbono, porém a adsorção da MO é de grande importância no processamento da MO, principalmente na zona de mistura das águas. Os resultados do presente estudo mostraram que as bactérias planctônicas contribuem significativamente para a transformação da MO, sendo que as altas taxas de RB destacam o importante papel das bactérias planctônicas para a remineralização de carbono e nutrientes na zona de confluência dos rios Negro e Solimões.
In order to evaluated the role of bacterial metabolism for the organic matter (OM) dynamics on the confluence zone of Negro and Solimões rivers, it was estimated in spatial scale: bacterial production (BP), bacterial respiration (BR), bacterial carbon demand (BCD), bacterial growth efficiency (BGE), in addition, chemical and physical variables, such as inorganic nutrients, dissolved organic carbon (DOC), stoichiometric ratio of nutrients, conductivity and turbidity. An experiment was conducted to estimate the contribution of bacterial activity and sorption process of OM to the DOC decay on the mixing waters. The metabolic rates showed longitudinal and lateral variability along Negro and Solimões rivers. However, it was observed in the metabolic rates with the increase of mixing waters in situ. The BP ranged between 0,03 and 0,56 μgC L-1 h-1 and the BR between 38,8 and 78,73 μgC L-1 h-1, reflecting in low BGE rates, average 0,236%, which means the heterotrophic bacteria allocated major part of OM available to the cells catabolic process, resulting in a quick remineralization of carbon and nutrients on these systems. In general, the nutrients and the quality and quantity of OM were the factors that most contributed to bacterial metabolism in the studied site. The bacterial metabolism showed as major component to the DOC decay, however, the OM sorption process is very important to the OM processing, mainly on water mixing zone. The results of this study showed that planktonic bacteria significantly contributed to the processing of OM, and high BR rates highlight the important role of planktonic bacteria for the carbon and nutrient remineralization on the confluence zone of the Negro and Solimões rivers.
Tassone, Spencer. „A comparison of computational methods for estimating estuarine production and respiration from diel open water dissolved oxygen measurements“. VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4988.
Der volle Inhalt der QuelleStuart, Anne. „ELEMENTAL COMPOSITION AND NUTRIENT EFFECT ON THE UPTAKE AND METABOLISM OF DISSOLVED ORGANIC CARBON BY BACTERIA FROM A TEMPERATE REGION RIVER“. VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/11.
Der volle Inhalt der QuelleBücher zum Thema "River metabolism"
Stefan, Anderberg, und International Institute for Applied Systems Analysis, Hrsg. Old sins: Industrial metabolism, heavy metal pollution, and environmental transition in central Europe. Tokyo: United Nations University Press, 2000.
Den vollen Inhalt der Quelle findenBiofilms fluvials: Metabolisme heterotròfic i autotròfic en rius mediterranis. Barcelona: Institut d'Estudis Catalans, 2001.
Den vollen Inhalt der Quelle findenColombo, Michael J. Nutrient enrichment, phytoplankton algal growth, and estimated rates of instream metabolic processes in the Quinebaug River basin, Connecticut, 2000-2001. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2004.
Den vollen Inhalt der Quelle findenMasese, Frank Onderi. Dynamics in Organic Matter Processing, Ecosystem Metabolism and Tropic Sources for Consumers in the Mara River, Kenya. Taylor & Francis Group, 2015.
Den vollen Inhalt der Quelle findenDynamics in Organic Matter Processing Ecosystem Metabolism and Tropic Sources for Consumers in the Mara River Kenya. Taylor & Francis Group, 2018.
Den vollen Inhalt der Quelle findenBott, T. L. Bethnic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept. 1985.
Den vollen Inhalt der Quelle findenPrieler, Sylvia, Stefan Anderberg und Krzysztof Olendrzynski. Old Sins: Industrial Metabolism, Heavy Metal Pollution, and Environmental Transition in Central Europe. United Nations University Press, 2000.
Den vollen Inhalt der Quelle findenMARROQUÍN-DE JESÚS, Ángel, Juan Manuel OLIVARES-RAMÍREZ, Andrés DECTOR-ESPINOZA und Luis Eduardo CRUZ-CARPIO. CIERMMI Women in Science Biology, Chemistry and Life Sciences Handbook T-XIV. ECORFAN-Mexico, S.C., 2021. http://dx.doi.org/10.35429/h.2021.14.1.119.
Der volle Inhalt der QuelleBuchteile zum Thema "River metabolism"
Carmouze, Jean-Pierre, Bias de Farias, Marcelo Corrêa Bernardes und Kátia Naomi Kuroshima. „Benthic influence on the metabolism of a shallow tropical lagoon (Lagoa da Barra, Brazil)“. In Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces, 89–100. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5266-2_7.
Der volle Inhalt der QuelleDe Martino, Paolo. „Towards Circular Port–City Territories“. In Regenerative Territories, 161–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78536-9_10.
Der volle Inhalt der QuelleGangstad, Edward O. „Metabolism Studies of 2,4-D in Fish*“. In Weed Control Methods for River Basin Management, 169–72. CRC Press, 2018. http://dx.doi.org/10.1201/9781351077729-23.
Der volle Inhalt der QuelleAcuña, Vicenç, Anna Freixa, Rafael Marcé und Xisca Timoner. „Ecosystem Metabolism in River Networks and Climate Change“. In Climate Change and Microbial Ecology: Current Research and Future Trends (Second Edition). Caister Academic Press, 2020. http://dx.doi.org/10.21775/9781913652579.14.
Der volle Inhalt der QuelleRojano, F., David H. Huber, Ifeoma R. Ugwuanyi, Vadesse Lhilhi Noundou, Andrielle L. Kemajou Tchamba und Jesus E. Chavarria-Palma. „Insights from river metabolism assisted by hydrodynamics and a high frequency monitoring system of water quality for Kanawha River, West Virginia“. In River Flow 2020, 2110–18. CRC Press, 2020. http://dx.doi.org/10.1201/b22619-295.
Der volle Inhalt der QuelleAcuña, Vicenç, Rafael Marcé und Xisca Timoner. „Ecosystem Metabolism in River Networks and Global Climate Change“. In Climate Change and Microbial Ecology: Current Research and Future Trends, 137–52. Caister Academic Press, 2016. http://dx.doi.org/10.21775/9781910190319.09.
Der volle Inhalt der Quelle„Anadromous Sturgeons: Habitats, Threats, and Management“. In Anadromous Sturgeons: Habitats, Threats, and Management, herausgegeben von Daryl C. Parkyn, Debra J. Murie, Julianne E. Harris, Douglas E. Colle und James D. Holloway. American Fisheries Society, 2007. http://dx.doi.org/10.47886/9781888569919.ch3.
Der volle Inhalt der QuelleBARLES, SABINE. „THE SEINE AND PARISIAN METABOLISM:“. In Urban Rivers, 95–112. University of Pittsburgh Press, 2012. http://dx.doi.org/10.2307/j.ctv10tq43d.10.
Der volle Inhalt der QuelleHall, Robert O. „Metabolism of Streams and Rivers“. In Stream Ecosystems in a Changing Environment, 151–80. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-405890-3.00004-x.
Der volle Inhalt der QuelleEl-Daoushy, Farid. „Assessing Environment-Climate Impacts in the Nile Basin for Decision-making“. In Green Technologies, 694–712. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-472-1.ch407.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "River metabolism"
Rosario, Grace M., und Gabrielle C. L. David. „ASSESSING THE EFFECTS OF LARGE WOOD AND STREAM METABOLISM IN THE ASSABET RIVER, MA“. In 51st Annual Northeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016ne-272849.
Der volle Inhalt der QuelleMilošković, Aleksandra, Nataša Kojadinović, Milena Radenković, Simona Đuretanović, Tijana Veličković, Marijana Nikolić und Vladica Simić. „POTENTIALLY TOXIC ELEMENTS IN LOWLAND GREAT MORAVA RIVER – BIOINDICATION WITH BLEAK (ALBURNUS ALBURNUS)“. In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.097m.
Der volle Inhalt der QuelleAngelotti, Austin, Rachel Cole, Amy Webb, Maciej Pietrzak und Martha Belury. „Diet-induced Gene Expression Changes of Cachectic Muscle, Adipose, and Liver“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/gvbe2596.
Der volle Inhalt der QuelleLyu, Xidi, Kexi Liao, Zihan Zou, Guoxi He und Shitao Liu. „Effects of Flow Velocity on Biofilm formation and corrosion behavior of L245 steel in the presence of sulfate reducing bacteria“. In International Petroleum Technology Conference. IPTC, 2024. http://dx.doi.org/10.2523/iptc-24640-ms.
Der volle Inhalt der Quelle