Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ribosomal maturation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ribosomal maturation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ribosomal maturation"
Moraleva, Anastasia A., Alexander S. Deryabin, Yury P. Rubtsov, Maria P. Rubtsova und Olga A. Dontsova. „Eukaryotic Ribosome Biogenesis: The 60S Subunit“. Acta Naturae 14, Nr. 2 (21.07.2022): 39–49. http://dx.doi.org/10.32607/actanaturae.11541.
Der volle Inhalt der QuelleShayan, Ramtin, Dana Rinaldi, Natacha Larburu, Laura Plassart, Stéphanie Balor, David Bouyssié, Simon Lebaron, Julien Marcoux, Pierre-Emmanuel Gleizes und Célia Plisson-Chastang. „Good Vibrations: Structural Remodeling of Maturing Yeast Pre-40S Ribosomal Particles Followed by Cryo-Electron Microscopy“. Molecules 25, Nr. 5 (03.03.2020): 1125. http://dx.doi.org/10.3390/molecules25051125.
Der volle Inhalt der QuelleYu, Ting, und Fuxing Zeng. „Chloramphenicol Interferes with 50S Ribosomal Subunit Maturation via Direct and Indirect Mechanisms“. Biomolecules 14, Nr. 10 (27.09.2024): 1225. http://dx.doi.org/10.3390/biom14101225.
Der volle Inhalt der QuelleMoraleva, Anastasia A., Alexander S. Deryabin, Yury P. Rubtsov, Maria P. Rubtsova und Olga A. Dontsova. „Eukaryotic Ribosome Biogenesis: The 40S Subunit“. Acta Naturae 14, Nr. 1 (10.05.2022): 14–30. http://dx.doi.org/10.32607/actanaturae.11540.
Der volle Inhalt der QuelleSleiman, Sophie, und Francois Dragon. „Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10“. Cells 8, Nr. 9 (05.09.2019): 1035. http://dx.doi.org/10.3390/cells8091035.
Der volle Inhalt der QuelleBikmullin, Aydar G., Bulat Fatkhullin, Artem Stetsenko, Azat Gabdulkhakov, Natalia Garaeva, Liliia Nurullina, Evelina Klochkova et al. „Yet Another Similarity between Mitochondrial and Bacterial Ribosomal Small Subunit Biogenesis Obtained by Structural Characterization of RbfA from S. aureus“. International Journal of Molecular Sciences 24, Nr. 3 (20.01.2023): 2118. http://dx.doi.org/10.3390/ijms24032118.
Der volle Inhalt der QuelleMartinez-Seidel, Federico, Olga Beine-Golovchuk, Yin-Chen Hsieh, Kheloud El Eshraky, Michal Gorka, Bo-Eng Cheong, Erika V. Jimenez-Posada et al. „Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis“. International Journal of Molecular Sciences 22, Nr. 11 (07.06.2021): 6160. http://dx.doi.org/10.3390/ijms22116160.
Der volle Inhalt der QuelleWarren, Alan J. „Shwachman-Diamond Syndrome and the Quality Control of Ribosome Assembly“. Blood 128, Nr. 22 (02.12.2016): SCI—42—SCI—42. http://dx.doi.org/10.1182/blood.v128.22.sci-42.sci-42.
Der volle Inhalt der QuelleGraifer, Dmitri, und Galina Karpova. „Eukaryotic protein uS19: a component of the decoding site of ribosomes and a player in human diseases“. Biochemical Journal 478, Nr. 5 (04.03.2021): 997–1008. http://dx.doi.org/10.1042/bcj20200950.
Der volle Inhalt der QuelleSchedlbauer, Andreas, Idoia Iturrioz, Borja Ochoa-Lizarralde, Tammo Diercks, Jorge Pedro López-Alonso, José Luis Lavin, Tatsuya Kaminishi et al. „A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit“. Science Advances 7, Nr. 23 (Juni 2021): eabf7547. http://dx.doi.org/10.1126/sciadv.abf7547.
Der volle Inhalt der QuelleDissertationen zum Thema "Ribosomal maturation"
Nord, Stefan. „The importance of maturation factors in 30S ribosomal subunit assembly“. Doctoral thesis, Umeå universitet, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-35890.
Der volle Inhalt der QuelleMonteringen av ribosomen är en komplex process som måste vara effektiv för cellen skall kunna växa så fort som möjligt. Det är visat sedan tidigare att ribosomens två subenheter kan monteras ihop in vitro och sedan vara del av en ribosom som gungerar vid proteinsyntes, dock är den typen av rekonstrueringsreaktioner mycket ineffektiva i jämförelse med vad som krävs in vivo. Skillnaden mellan dessa två tillstånd är primärt in vivo-reaktionens närvaro av hjälpproteiner. Hjälpproteinerna assisterar monteringen av ribosomens subenheter men är själva inte en del av den färdiga ribosomen. Inom denna klass av proteiner återfinns proteiner som t.ex. processerar ribosomalt RNA och proteiner som modifierar ribosomalt RNA och ribosomala protein. En klass av hjälpproteiner, mognadsfaktorerna, har varit svåra att klassificera på grund av strukturella olikheter och en brist på funktionella likheter. En del i detta avhandlingsarbete var karaktäriseringen av den tidigare okända mognadsfaktorn RimP, tidigare kallad YhbC eller P15A. En deletion av rimP hade störst påverkan på tillväxthastigheten vid 44°C, men effekter kunde även ses vid 30°C och 37°C. En analys av den ribosomala statusen visade på en minskning av ribosomer aktiva i translation och en motsvarande ökning av fria 50S- och 30S-subenheter. Den oproportionerligt höga ökningen av fria 50S-subenheter, i relation till 30S-subenheter, indikerade att något var fel i monteringen av 30S-subenheten. RimP-proteinet återfanns lokaliserat till fria 30S-subenheter, och en ökning av omoget 16S ribosomalt RNA i en stam som saknar RimP stödjer dess roll i monteringen av 30S-subenheten. Rekonstrueringsexperiment In vitro har gett många värdefulla ledtrådar till hur 30S-subenheten monteras ihop. Genom att använda en nyligen utvecklad metod kunde vi undersöka hur mognadsfaktorerna Era, RimM och RimP påverkade monteringen av ribosomens 30S subenhet in vitro. Era ökade inkorporeringshastigheten av många av de ribosomala proteiner som inkorporeras sent i monteringen av 30S, medans RimM och RimP uppvisade mer specifika effekter. RimM ökade inkorporeringshastigheten för de ribosomala proteinerna S19 och S9, men dessutom inhiberade RimM inkorporeringen av de ribosomala proteinerna S13 och S12. RimP uppvisade den tydligaste effekten av de undersökta proteinerna genom att kraftigt öka 8 inkorporeringshastigheten för det ribosomala proteinet S12, och ökade även inkorporeringshastigheten för det ribosomala proteinet S5. En jämförelse av de två mognadsfaktorerna RbfA och RimP visade på strukturella likheter mellan RimP:s N-terminala domän och den enda domänen hos RbfA. RbfA är ett 15 kDa protein som upptäcktes som en hög-kopiesupressor av en dominant C23U-mutation i 16S ribosomalt RNA som leder till köld-känslighet hos E. coli. Ett antal kromosomala supressormutationer som ökade tillväxthastigheten för en mutant som saknar RbfA isolerades och de fem starkaste av dessa lokaliserades till rpsE genen som kodar för det ribosomala proteinet S5. Mutationerna gav upphov till aminosyra utbyten i tre positioner i S5: G87A, G87S, G91A, A127T och A127V. Förändringarna i S5 förbättrade translationen och processningen av 16S ribosomalt RNA i mutantensom saknar RbfA. Dessutom förbättrade mutationerna tillväxthastigheten hos C23U-mutanten vid 30, 37 och 44°C.
Trinquier, Aude. „Coupling between transfer RNA maturation and ribosomal RNA processing in Bacillus subtilis“. Thesis, Université de Paris (2019-....), 2019. http://www.theses.fr/2019UNIP7066.
Der volle Inhalt der QuelleCellular protein synthesis both requires functional ribosomes and mature transfer RNAs (tRNAs) as adapter molecules. The ribosomes are large essential ribonucleoprotein complexes whose biogenesis accounts for most of cellular transcription and consumes a major portion of the cell’s energy. Ribosome biogenesis is therefore tightly adjusted to the cellular needs and actively surveilled to rapidly degrade defective particles that could interfere with translation. Interestingly, tRNAs and ribosomal RNAs (rRNAs) are both transcribed from longer primary transcripts and universally require processing to become functional for translation. In this thesis, I have characterized a coupling mechanism between tRNA processing and ribosome biogenesis in the Gram-positive model organism Bacillus subtilis. Accumulation of immature tRNAs during tRNA maturase depletion, specifically abolishes 16S rRNA 3’ processing by the endonuclease YqfG/YbeY, the last step in small ribosomal subunit formation. We showed that this maturation deficiency resulted from a late small subunit (30S) assembly defect coinciding with changes in expression of several key 30S assembly cofactors, mediated by both transcriptional and post-transcriptional effects. Interestingly, our results indicate that accumulation of immature tRNAs is sensed by the stringent factor RelA and triggers (p)ppGpp production. We showed that (p)ppGpp synthesis and the accompanying decrease in GTP levels inhibits 16S rRNA 3’ processing, most likely by affecting GTPases involved in ribosome assembly. The inhibition of 16S rRNA 3’ processing is thought to further lead to degradation of partially assembled particles by RNase R. Thus, we propose a model where RelA senses temporary slow-downs in tRNA maturation and this leads to an appropriate readjustment of ribosome biogenesis. This coupling mechanism would maintain the physiological balance between tRNAs and rRNAs, the two major components of the translation machinery
Akhtar, Y. „Studies on the maturation pathway of ribosomal precursor RNA : Analysis of Xenopus ribosomal RNA synthesised by transcription in vitro“. Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382054.
Der volle Inhalt der QuelleDurovic, Peter Vincent. „Characterisation of a novel pathway for ribosomal RNA maturation in Sulfolobus acidocaldarius“. Thesis, University of British Columbia, 1993. http://hdl.handle.net/2429/41498.
Der volle Inhalt der QuelleMedicine, Faculty of
Medical Genetics, Department of
Graduate
Intine, Robert V. A. „Structural features of the 5' ETS in Schizosaccharomyces pombe essential for ribosomal RNA maturation“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0006/NQ40374.pdf.
Der volle Inhalt der QuelleBraun, Christina [Verfasser], und Jorge [Akademischer Betreuer] Perez-Fernandez. „Functional characterization of Pol5 in the maturation of both ribosomal subunits / Christina Braun ; Betreuer: Jorge Perez-Fernandez“. Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1220080578/34.
Der volle Inhalt der QuelleTeubl, Fabian [Verfasser], und Joachim [Akademischer Betreuer] Griesenbeck. „Structural and Functional Studies on the Role of Noc3p for Large Ribosomal Subunit Maturation in Saccharomyces cerevisiae / Fabian Teubl ; Betreuer: Joachim Griesenbeck“. Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1223198138/34.
Der volle Inhalt der QuelleTAVERNITI, VALERIO. „RNA MATURATION/DEGRADATION IN MYCOBACTERIA: IN VIVO AND IN VITRO CHARACTERIZATION OF RNASE J AND RNASE E“. Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/151782.
Der volle Inhalt der QuelleDumont, Julien. „Contrôle des divisions asymétriques et de l'arrêt CSF dans l'ovocyte de souris : rôles de la GTPase Ran, de la Formine-2 et de p90rsk“. Paris 6, 2006. http://www.theses.fr/2006PA066357.
Der volle Inhalt der QuelleBertrand, Alexis. „Caractérisation fonctionnelle de mutations somatiques compensatrices d'elF6 dans le contexte du syndrome de Shwachman- Diamond“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL089.
Der volle Inhalt der QuelleShwachman Diamond syndrome (SDS) is a rare genetic ribosomopathy leading to impaired protein synthesis, which causes numerous symptoms including bone marrow failure and neutropenia that can evolve to myelodysplasia syndrome or acute myeloid leukaemia. Biallelic mutations in the SBDS gene are responsible of above 90% of the SDS cases and we recently identified biallelic EFL1 mutations as a novel cause of SDS. SBDS together with EFL1 remove the anti-association factor elF6 from the pre60S ribosomal subunit, allowing its interaction with the 40S subunit to form the mature ribosome 80S. Natural acquisition of somatic genetic events over time participâtes to age-related diseases and cancer development. However, in Mendelian diseases these events can, in rare case, counteract the deleterious effect of the germline mutation and provide a sélective advantage to the somatically modified cells, a phenomenon dubbed Somatic Genetic Rescue (SGR). We recently showed that several somatic genetic events affecting the expression or function of elF6 are frequently detected in blood clones from SDS patients but not in healthy individuals, suggesting a mechanism of SGR. While most of these somatic mutations induce elF6 destabilization or EIF6 haploinsufficiency, one récurrent mutation (N106S) did not affect the expression of elF6 but rather impact its ability to interact with the 60S subunit. In order to further investigate the functional conséquences of ElF6 haploinsufficiency and N106S mutation in a context of SDS, I introduced via CRISPR/Cas9 these mutations in immortalized fibroblastic cell line from SDS patients and control. These original cellular models hâve made it possible to détermine the impact of the N106S mutation on the localisation and function of elF6 and also to clarify the effects of these mutations on several aspects of cellular fitness, in particular ribosome biogenesis, translation rate and cell prolifération. Overall, the development of these cellular models has helped to characterise how the somatic N106S mutation and elF6 haploinsufficiency confer a sélective advantage in cells déficient in SBDS or EFL1
Buchteile zum Thema "Ribosomal maturation"
Marshak, T. L., V. Mares, A. A. Karavanov, V. V. Nosikov und V. Ya Brodsky. „Cell Differentiation According to Maturation of Nucleolar Apparatus and Topography of Ribosomal Genes“. In Nuclear Structure and Function, 133–37. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0667-2_27.
Der volle Inhalt der QuelleAlix, Jean-Hervée. „Relationship Between Methylation and Maturation of Ribosomal RNA in Prokaryotic and Eukaryotic Cells“. In Biological Methylation and Drug Design, 175–87. Totowa, NJ: Humana Press, 1986. http://dx.doi.org/10.1007/978-1-4612-5012-8_15.
Der volle Inhalt der QuelleHadjiolov, Asen A. „Maturation of Preribosomes“. In The Nucleolus and Ribosome Biogenesis, 87–110. Vienna: Springer Vienna, 1985. http://dx.doi.org/10.1007/978-3-7091-8742-5_4.
Der volle Inhalt der QuelleBraun, Christina, Robert Knüppel, Jorge Perez-Fernandez und Sébastien Ferreira-Cerca. „Non-radioactive In Vivo Labeling of RNA with 4-Thiouracil“. In Ribosome Biogenesis, 199–213. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_12.
Der volle Inhalt der QuelleGroves, Maria A., und Adrian A. Nickson. „Affinity Maturation of Phage Display Antibody Populations Using Ribosome Display“. In Ribosome Display and Related Technologies, 163–90. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-379-0_10.
Der volle Inhalt der QuelleHufton, Simon E. „Affinity Maturation and Functional Dissection of a Humanised Anti-RAGE Monoclonal Antibody by Ribosome Display“. In Ribosome Display and Related Technologies, 403–22. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-61779-379-0_23.
Der volle Inhalt der QuelleHimeno, Hyouta, Takefusa Tarusawa, Shion Ito und Simon Goto. „Defective Ribosome Maturation or Function MakesEscherichia ColiCells Salt-Resistant“. In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 687–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch65.
Der volle Inhalt der Quelleblatt, J. Roth. „Protein translocation and maturation in the mammalian Er“. In Secretory Pathway, 65–67. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198599425.003.0040.
Der volle Inhalt der QuelleElliott, David, und Michael Ladomery. „The biogenesis and nucleocytoplasmic traffic of non-coding RNAs“. In Molecular Biology of RNA. Oxford University Press, 2015. http://dx.doi.org/10.1093/hesc/9780199671397.003.00014.
Der volle Inhalt der QuelleDeutscher, Murray P. „Chapter 9 Maturation and Degradation of Ribosomal RNA in Bacteria“. In Progress in Molecular Biology and Translational Science, 369–91. Elsevier, 2009. http://dx.doi.org/10.1016/s0079-6603(08)00809-x.
Der volle Inhalt der Quelle