Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Rhizosphere microbiota“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Rhizosphere microbiota" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Rhizosphere microbiota"
Karpenko, V. P., S. P. Poltoretskyi, V. V. Liubych, D. M. Adamenko, I. S. Kravets, R. M. Prytuliak, V. S. Kravchenko, N. I. Patyka und V. P. Patyka. „Microbiota in the Rhizosphere of Cereal Crops“. Mikrobiolohichnyi Zhurnal 83, Nr. 1 (17.02.2021): 21–31. http://dx.doi.org/10.15407/microbiolj83.01.021.
Der volle Inhalt der QuelleCheng, Zhiqiang, Shaonan Lei, Ye Li, Wei Huang, Rongqin Ma, Juan Xiong, Ting Zhang et al. „Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota“. Microorganisms 8, Nr. 2 (25.01.2020): 170. http://dx.doi.org/10.3390/microorganisms8020170.
Der volle Inhalt der QuelleZhang, Xiaoke, Huili Wang, Zhifei Li, Jun Xie und Jiajia Ni. „Hydrological and soil physiochemical variables determine the rhizospheric microbiota in subtropical lakeshore areas“. PeerJ 8 (29.09.2020): e10078. http://dx.doi.org/10.7717/peerj.10078.
Der volle Inhalt der QuelleDries, Leonie, Maximilian Hendgen, Sylvia Schnell, Otmar Löhnertz und Anne Vortkamp. „Rhizosphere engineering: leading towards a sustainable viticulture?“ OENO One 55, Nr. 2 (11.06.2021): 353–63. http://dx.doi.org/10.20870/oeno-one.2021.55.2.4534.
Der volle Inhalt der QuelleHan, Gil, Mohamed Mannaa, Hyoseong Jeon, Hyejung Jung, Jin-Cheol Kim, Ae Ran Park und Young-Su Seo. „Dysbiosis in the Rhizosphere Microbiome of Standing Dead Korean Fir (Abies koreana)“. Plants 11, Nr. 7 (05.04.2022): 990. http://dx.doi.org/10.3390/plants11070990.
Der volle Inhalt der QuelleZhang, Zhen, Lu Chang, Xiuxiu Liu, Jing Wang, Xianhong Ge, Jiasen Cheng, Jiatao Xie et al. „Rapeseed Domestication Affects the Diversity of Rhizosphere Microbiota“. Microorganisms 11, Nr. 3 (11.03.2023): 724. http://dx.doi.org/10.3390/microorganisms11030724.
Der volle Inhalt der QuelleZhatova, H. O., L. M. Bondarieva und Y. V. Koplyk. „Features of the rhiospheric microbiota of medicinal plants“. Bulletin of Sumy National Agrarian University. The series: Agronomy and Biology, Nr. 4(38) (25.12.2019): 61–65. http://dx.doi.org/10.32845/agrobio.2019.4.9.
Der volle Inhalt der QuelleSánchez-Salazar, Angela M., Jacquelinne J. Acuña, Michael J. Sadowsky und Milko A. Jorquera. „Bacterial Community Composition and Presence of Plasmids in the Endosphere- and Rhizosphere-Associated Microbiota of Sea Fig (Carpobrotus aequilaterus)“. Diversity 15, Nr. 11 (20.11.2023): 1156. http://dx.doi.org/10.3390/d15111156.
Der volle Inhalt der QuelleMay-Mutul, Carla G., Miguel A. López-Garrido, Aileen O’Connor-Sánchez, Yuri J. Peña-Ramírez, Natalia Y. Labrín-Sotomayor, Héctor Estrada-Medina und Miriam M. Ferrer. „Hidden Tenants: Microbiota of the Rhizosphere and Phyllosphere of Cordia dodecandra Trees in Mayan Forests and Homegardens“. Plants 11, Nr. 22 (15.11.2022): 3098. http://dx.doi.org/10.3390/plants11223098.
Der volle Inhalt der QuelleXu, Junhuan, Tyson Knight, Donchel Boone, Muhammad Saleem, Sheree J. Finley, Nicole Gauthier, Joseph A. Ayariga et al. „Influence of Fungicide Application on Rhizosphere Microbiota Structure and Microbial Secreted Enzymes in Diverse Cannabinoid-Rich Hemp Cultivars“. International Journal of Molecular Sciences 25, Nr. 11 (28.05.2024): 5892. http://dx.doi.org/10.3390/ijms25115892.
Der volle Inhalt der QuelleDissertationen zum Thema "Rhizosphere microbiota"
Alegria, Terrazas Rodrigo. „Defining the host genetic control of the barley rhizosphere microbiota“. Thesis, University of Dundee, 2019. https://discovery.dundee.ac.uk/en/studentTheses/4ca9658f-c69d-4c23-b1b2-46d0ef40339d.
Der volle Inhalt der QuelleWalter, Diana Joyce, und dianawalter@internode on net. „The Environmental Impact of Genetically Modified Crop Plants on the Microbiology of the Rhizosphere“. Flinders University. Biotechnology, 2005. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20070301.161014.
Der volle Inhalt der QuelleChiaramonte, Josiane Barros. „The rhizosphere microbiome of common bean (Phaseolus vulgaris L.) and the effects on phosphorus uptake“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-17012019-161756/.
Der volle Inhalt der QuelleO atual aumento populacional irá demandar uma maior produção agrícola para completar a necessidade de alimento. Para suprir essa necessidade e preservar o meio ambiente, muitos recursos serão aplicados para promover a agricultura sustentável. A depleção de fósforo é um dos principais fatores que limita a produção agrícola em solos tropicais, onde o pH e o conteúdo de argila fixam rapidamente esse nutriente. Os melhoristas de plantas visam solucionar esse problema alterando a necessidade de fósforo das plantas e adaptando-as as baixas disponibilidade de fósforo. No entanto, com essas estratégias a demanda por fertilizantes fosfatados irá continuar assim como a exploração das reservas naturais de fósforo. Nesse estudo foi proposto que as plantas contrastantes em relação a eficiência na absorção de fósforo, i.e. P-eficiente e P-ineficiente, recrutariam um microbioma rizosférico distinto em relação a mobilização de fósforo. Essa hipótese foi testada cultivando plantas em um gradiente usando duas fontes distintas de P, triplo fosfato ou fosfato de rocha Bayovar. O microbioma da rizosfera de feijão foi então avaliado por técnicas dependentes e independentes de cultivo, análise enzimática, predição metagenômica e análises de network. Um enriquecimento diferencial de várias OTUs observado na rizosfera do genótipo de feijão P-ineficiente, e o enriquecimento de funções de quimiotaxia bacteriana e envolvidas na mobilização de fósforo sugerem que esse genótipo tem uma maior comunicação com o microbioma rizosférico e é altamente dependente deste para a mobilização de fósforo. Como prova de conceito, o genótipo P-eficiente foi plantado em solo previamente cultivadocom o genótipo P-ineficiente. Os resultados mostraram que o genótipo P-eficiente responde positivamente à rizosfera modificada nos estádios iniciais de crescimento, ou seja, o microbioma selecionado e enriquecido pelo genótipo P-ineficiente melhorou a absorção de fósforo no genótipo cultivado posteriormente no mesmo solo. Coletivamente, esses resultados sugerem que as plantas dependem parcialmente do microbioma da rizosfera para a absorção de P e que a exploraçãodestas interações durante o melhoramento vegetal permitiria a seleção de genótipos muito mais eficientes, conduzindo à uma agricultura sustentável explorando o fósforo residual do solo.
Tkacz, Andrzej. „Plant genotype, immunity and soil composition control the rhizosphere microbiome“. Thesis, University of East Anglia, 2013. https://ueaeprints.uea.ac.uk/48113/.
Der volle Inhalt der QuelleTurner, Thomas. „Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome“. Thesis, University of East Anglia, 2013. https://ueaeprints.uea.ac.uk/49600/.
Der volle Inhalt der QuelleGuyonnet, Julien. „Effet de la stratégie de gestion des ressources des plantes sur l’investissement dans l’exsudation racinaire, et les conséquences sur les communautés bactériennes“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1008.
Der volle Inhalt der QuelleRoot exudation is known to influence microbial communities functioning, in particular those involve in nitrogen cycle. (Haichar et al, 2012). It’s linked to plant physiology, which can be evaluated with functional traits, allowing a plant distribution in function of their performance in their environment. Thus, we can distinguish competitive species, with higher photosynthetic capacity and rapid rates of N acquisition, conservative species with the opposite characteristics (Aerts & Chapin, 1999) and intermediate plants, with intermediate characteristics.The objective of this work is to determinate the influence of nutrient management strategiy of 6 poaceae, along a strategies gradient from conservative strategy (Sesleria caerulea and Festuca paniculata), intermediate (Antoxanthum odoratum and Bromus erectus) to competitive strategy (Dactylis glomerata and Trisetum flavescens), on diversity and functioning of total and denitrifying communities.I) Firstly, we studied the link between the plant nutrient management strategy and the root exudates quantity in the root adhering soil (RAS). Then, we determined the influence of the rate of root exudation on potential microbial activities (respiration and denitrification), and with a DNA-SIP (Stable Isotope Probing) approach coupled to high-throughput sequencing, the influence of root exudation on the bacterial structure and diversity of communities colonizing the RAS and the root system. II) Secondly, we studied the link between the plant nutrient management strategy and the nature of molecules exuded in RAS and present in root extracts by analyzing primary metabolites profile to Festuca paniculata, Bromus erectus and Dactylis glomerata, respectively a conservative, an intermediate and a competitive plant. Then, we determined the influence of primary metabolites profile of each plant on semi-real denitrification of communities colonizing RAS of plants. III) Finally, an mRNA-SIP approach is in progress to determine the influence of exuded metabolites on active bacterial communities functioning and the expression of genes involved in denitrification process in RAS and root system. Our results show an influence of the nutrient management strategy on the rate of carbon exudation, the competitive plants exuding more than conservatives ones
Ferreira, Clederson. „Dinâmica do microbioma da rizosfera de mandacaru na Caatinga“. Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-21032014-104600/.
Der volle Inhalt der QuelleThe present world scenario of climate change, global warming and the increase in areas undergoing desertification, have directly impacted on current patterns of agricultural crop production. The Caatinga is a specific Brazilian biome because of its semi-arid climate, hot and low rainfall, and the temperature that reaches the 60°C in the dry season. The Caatinga has a huge biodiversity and much of its diversity is not found in any other biome. A peculiar characteristic of the Caatinga biome is the occurrence of two very contrasting seasons during the year, the winter which is characterized by a rainy season and summer the dry season. The vegetation is composed by Euphorbiaceae , Bromeliaceae and Cactaceae, represented by Cereus jamacaru (Mandacaru) Pilosocereus gounellei (xique-xique) and Melocactus sp. (head-to-brother). Mandacaru is the plant that can survive through the specifics climate conditions of the Caatinga biome such as high temperatures and low water availability and this is probably due to some structural and morphological adaptations that contribute to its survival. Therefore, we assessed which microorganisms are associated with the plant rhizosphere, and which microbial groups contribute to the maintenance of the host throughout these adverse conditions. Also, we identified which are the most abundant microbial groups in these conditions and which microbial functions are more abundant in both evaluated seasons. Thus the present study assessed the mandacaru rhizosphere microbiome through a partial 16S rRNA gene sequencing and metagenomic sequencing. The bacterial community was well represented by the phyla Actinobacteria, Proteobacteria and Acidobacteria. The Actinobacteria was the most abundant microbial phyla in the dry season according to shotgun sequencing while the Acidobacteria was the most abundant microbial phyla in the rainy season. Overall, the 16S rRNA sequencing indicated that Actinobacteria and Proteobacteria were the most abundant groups and additionally, and genes related to disease resistance functions were more abundant in the dry season. Genes related to nitrogen metabolism were more abundant during the rainy season revealing some of the potential traits that the mandacaru can explore from its microbiome.
Berdugo, Silvia Eugenia Barrera. „Redes ecológicas em comunidades bacterianas da filosfera, dermosfera e rizosfera de espécies arbóreas da Mata Atlântica“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-09112016-155442/.
Der volle Inhalt der QuelleThe Atlantic Forest is a rainforest considered a hotspot of biodiversity and endemism. It is one of the oldest forests in the world and one of the largest forests of America, covering approximately 150 million hectares in highly heterogeneous environmental conditions. Studies in different environments of the Atlantic forest, in the Picinguaba and Santa Virginia areas in the Serra do Mar State Park (PESM) have been conducted to determine the species diversity and changes in the structure of the bacterial communities in the phyllosphere, dermosphere and rhizosphere. However, little is known on the ecological functions of these bacteria, and on the ecological interactions between microbial communities and the environment in which they develop. The aim of this study was to explore the interactions between the microbial communities of the phyllosphere, dermosphere and rhizosphere of two tree species of the Atlantic Forest along an altitudinal gradient. Co-occurrence analysis based on data obtained by pyrosequencing of the 16S rRNA gene V4 region of bacteria to determine patterns of bacterial associations in different taxonomic levels in each microenvironment. For this study, the hypothesis that even if the environmental conditions are different in each type of forest (altitudinal gradient), there may be specific groups of bacteria that co-occur in the phyllosphere, dermosphere or rhizosphere, functioning as keystone taxa in the bacterial communities. Based on the sequencing of 16S rRNA genes, bacterial communities associated with the E. edulis and G. opposita phyllosphere and dermosphere in different forests were more similar to each other than the rhizosphere. Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes were the more abundant taxa in all studied microenvironments. Differences in the bacterial community structures in the phyllosphere, dermosphere and rhizosphere were observed along the altitudinal gradient, regardless of the plant species. In the lowland forest, the bacterial community associated with the phyllosphere was more similar between E. edulis and G. opposita. The rhizosphere bacterial community was more similar within each forest type than between forests, suggesting an effect of the forest physiognomy on the bacterial communities of the rhizosphere. Exploring the co-occurrence networks in the bacterial communities of each microenvironment it was observed that at the OTU level each microenvironment has different keystoine taxa that may regulate the ecological interactions in the community. Although the keystone taxa do not represent the most abundant OTUs in each microenvironment, they belong predominantly to Alphaproteobacteria and Gammaproteobacteria classes, suggesting that in the phyllosphere, dermosphere and rhizosphere the core microbiome cannot be determined at the OTU level, but possibly at higher taxonomic levels representing microbial groups having redundant functions.
Xiao, Hua. „Exploring candidate genes and rhizosphere microbiome in relation to iron cycling in Andean potatoes“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77917.
Der volle Inhalt der QuellePh. D.
Braga, Lucas Palma Perez. „Disentangling the influence of earthworms on microbial communities in sugarcane rhizosphere“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/64/64133/tde-26052017-100757/.
Der volle Inhalt der QuelleAo longo dos últimos 150 anos muitos estudos têm demonstrado a importância das minhocas para o crescimento de plantas. Porém o exato mecanismo envolvido neste processo ainda é muito pouco compreendido. Muitas funções importantes necessárias para o crescimento de plantas podem ser realizadas pela comunidade microbiana da rizosfera. Para investigar a influência das minhocas na comunidade microbiana da rizosfera, foi desenvolvido um experimento de macrocosmo com cana-de-açúcar com e sem Pontoscolex corethrurus (EW+ e EW-, respectivamente) seguindo diversos procedimentos por 217 dias. No Segundo capítulo da tese é demonstrado que no tratamento EW+, as concentrações de N2O dentro do solo (15 cm profundidade) e a abundância relativa dos genes óxido nitroso redutase (nosZ) foram elevadas no solo e na rizosfera, sugerindo que microrganismos do solo foram capazes de consumir a emissão de N2O induzida pelas minhocas. O sequenciamento do DNA total revelou que aproximadamente 70 funções microbianas no solo e na rizosfera apresentaram diferenças entre os tratamentos EW+ e EW-. No geral, genes associados a biossíntese e proliferação de células foram enriquecidos em EW+, sugerindo uma influencia positiva por parte das minhocas. Na rizosfera EW+, funções associadas a simbiose entre planta e microrganismos foram relativamente enriquecidas comparado com rizosfera EW-. Modelos de rede de interação ecológica revelam menor número de diversificação de nichos e aumento de funções importantes como um efeito derivado da influência das minhocas. A biomassa das plantas foi aumentada no tratamento EW+ e a população de minhocas proliferou. Considerando que as minhocas contribuíram com o aumento de nutrientes, foi avaliado no capítulo três a resposta do resistoma presente nas comunidades microbianas dos solos do experimento. Mecanismos de resistência contra compostos antimicrobianos parecem ser características obrigatórias para a ecologia e evolução de procariotos. Entretanto, a maior parte dos estudos sobre genes de resistência tem sido conduzida em condições artificiais utilizando fontes antropogênicas de antibióticos em comunidades microbianas muito específicas como por exemplo o microbioma animal. Para resolver por que e como a resistência evolui, é importante estudar genes de resistência a antibióticos (GRA) (i.e., resistoma) no seu ambiente natural e entender seu papel ecofisiologico no ambiente. Os resultados demonstraram que minhocas influenciaram a mudança na composição de GRA no solo e na rizosfera. Tratamentos EW+ apresentaram maior número de correlações negativas entre ARG e grupos taxonômicos. A medida de centralidade diferencial (DBC=nBCEW+ - nBCEW-) comparando os modelos de rede de interações obtidos mostrou que a composição e o nível de importância dos indivíduos mais influentes é alterado nos tratamentos EW+ comparado com EW-. Além disso, por meio de uma análise de redundância (RDA) foi demonstrado que as alterações na abundancia relativa de GRA podem ser explicadas pelas alterações verificadas em grupos taxonômicos
Bücher zum Thema "Rhizosphere microbiota"
Asiegbu, Fred O., und Andriy Kovalchuk. Forest Microbiology : Volume 1 : Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere. Elsevier Science & Technology, 2021.
Den vollen Inhalt der Quelle findenAsiegbu, Fred O., und Andriy Kovalchuk. Forest Microbiology : Volume 1 : Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere. Elsevier Science & Technology Books, 2021.
Den vollen Inhalt der Quelle findenGupta, Vijai Kumar, Dhananjaya Pratap Singh und Ratna Prabha. Microbial Interventions in Agriculture and Environment : Volume 2: Rhizosphere, Microbiome and Agro-ecology. Springer, 2019.
Den vollen Inhalt der Quelle findenGupta, Vijai Kumar, Dhananjaya Pratap Singh und Ratna Prabha. Microbial Interventions in Agriculture and Environment : Volume 2: Rhizosphere, Microbiome and Agro-ecology. Springer, 2020.
Den vollen Inhalt der Quelle findenGupta, Vijai Kumar, Dhananjaya Pratap Singh und Ratna Prabha. Microbial Interventions in Agriculture and Environment : Volume 2: Rhizosphere, Microbiome and Agro-ecology. Springer, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Rhizosphere microbiota"
Schlaeppi, Klaus, Emiel Ver Loren van Themaat, Davide Bulgarelli und Paul Schulze-Lefert. „Arabidopsis thalianaas Model for Studies on the Bacterial Root Microbiota“. In Molecular Microbial Ecology of the Rhizosphere, 243–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118297674.ch23.
Der volle Inhalt der QuelleAchouak, Wafa, und Feth el Zahar Haichar. „Stable Isotope Probing of Microbiota Structure and Function in the Plant Rhizosphere“. In Methods in Molecular Biology, 233–43. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9721-3_18.
Der volle Inhalt der QuelleSharma, Mayur Mukut Murlidhar, Divya Kapoor, Rahul Rohilla und Pankaj Sharma. „Nanomaterials and Their Toxicity to Beneficial Soil Microbiota and Fungi Associated Plants Rhizosphere“. In Nanomaterials and Nanocomposites Exposures to Plants, 353–80. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2419-6_18.
Der volle Inhalt der QuelleAfridi, Muhammad Siddique, Abdul Salam und Flavio Henrique Vasconcelos De Medeiros. „Rhizosphere Microbiome Manipulation“. In Advances in Plant Microbiome Research for Climate-Resilient Agriculture, 159–77. New York: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003501893-8.
Der volle Inhalt der QuelleAshajyothi, Mushineni, K. Charishma, Asharani Patel, Surinder Paul, Y. N. Venkatesh, Ish Prakash und Jyotsana Tilgam. „Rhizosphere Microbiome: Significance in Sustainable Crop Protection“. In Rhizosphere Microbes, 283–309. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5872-4_14.
Der volle Inhalt der QuelleRoy, Tina, Pooja Yadav, Anjali Chaudhary, Kanchan Yadav und Kunal Singh. „Rhizosphere Microbiome-Assisted Approaches for Biotic Stress Management“. In Rhizosphere Biology, 135–58. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4239-4_8.
Der volle Inhalt der QuelleRaaijmakers, Jos M. „The Minimal Rhizosphere Microbiome“. In Principles of Plant-Microbe Interactions, 411–17. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08575-3_43.
Der volle Inhalt der QuelleGholap, Amol D., Sagar R. Pardeshi, Pankaj R. Khuspe, Sadikali F. Sayyad, Machindra Chavan, Navnath T. Hatvate, Md Faiyazuddin und Md Jasim Uddin. „Manipulating the Rhizosphere Microbiome for Plant Health“. In Microbiome Engineering, 175–93. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003394662-13.
Der volle Inhalt der QuelleMalviya, Deepti, Talat Ilyas, Rajan Chaurasia, Udai B. Singh, Mohammad Shahid, Shailesh K. Vishwakarma, Zaryab Shafi, Bavita Yadav, Sushil K. Sharma und Harsh V. Singh. „Engineering the Plant Microbiome for Biotic Stress Tolerance: Biotechnological Advances“. In Rhizosphere Microbes, 133–51. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5872-4_7.
Der volle Inhalt der QuelleBhuyan, Bhrigu, Sourav Debnath und Piyush Pandey. „The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions“. In Rhizosphere Microbes, 503–29. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9154-9_21.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Rhizosphere microbiota"
Yin, Chuntao. „Disease-induced changes in the rhizosphere microbiome reduced root disease“. In IS-MPMI Congress. IS-MPMI, 2023. http://dx.doi.org/10.1094/ismpmi-2023-5r.
Der volle Inhalt der QuelleFarkhudinov, R. G., A. S. Grigoriadi und Yu M. Sotnikova. „The effect of oil pollution on the activity of physiological and biochemical processes in Triticum aestivum L. and the number of rhizospheric microbiota“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.069.
Der volle Inhalt der QuelleEgovtseva, A. Yu, und T. N. Melnichuk. „The influence of microbial preparations and farming systems on the structure of the microbocenosis of the rhizosphere of Triticum aestivum L.“ In РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ПРИРОДНЫХ РЕСУРСОВ В АГРОЦЕНОЗАХ. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-15.05.2020.09.
Der volle Inhalt der Quelle„Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?“ In Open-GPB. International Viticulture and Enology Society, 2024. http://dx.doi.org/10.58233/6oesc4ww.
Der volle Inhalt der QuelleGlazunova, Darina, Polina Kuryntseva, Polina Galitskaya und Svetlana Selivanovskaya. „ASSESSMENT OF THE DIVERSITY OF RHIZOSPHERIC CULTIVATED BACTERIA IN WHEAT PLANTS GROWN ON DIFFERENT SOIL TYPES“. In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/6.2/s25.11.
Der volle Inhalt der QuelleEgovtseva, A. Yu, T. N. Melnichuk und S. F. Abdurashitov. „The influence of farming systems and microbial preparations on the structure of the microbocenosis of the rhizosphere of Triticum aestivum L.“ In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.063.
Der volle Inhalt der QuelleRamirez-Villacis, Dario. „Andean blueberry (Vaccinium floribundum) rhizosphere microbiome composition along the Ecuadorian Highlands.“ In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1382411.
Der volle Inhalt der Quelle„Exploring wheat genotype influence on microbiome-mediated take-all disease suppression“. In Plant Health 2024. American Phytopathological Society, 2024. http://dx.doi.org/10.1094/aps-ph24-027.
Der volle Inhalt der Quelle„Antagonistic activity of rhizosphere bacterial community against corn pathogens“. In Plant Health 2024. American Phytopathological Society, 2024. http://dx.doi.org/10.1094/aps-ph24-009.
Der volle Inhalt der QuelleMelnichuk, T., A. Egovtseva, S. Abdurashitov, E. Andronov, E. Abdurashitova, A. Radchenko, T. Ganotskaya und L. Radchenko. „Changes in the taxonomic structure of the microbiome of chernozem southern of the rhizosphere Triticum aestivum L. under the influence of associative bacteria strains“. In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.167.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Rhizosphere microbiota"
Minz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson und Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Der volle Inhalt der QuelleCrowley, David E., Dror Minz und Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, Juli 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Der volle Inhalt der QuelleMendoza, Jonathan Alberto, Carolina Mazo, Lina Margarita Conn, Álvaro Rincón Castillo, Daniel Rojas Tapias und Ruth Bonilla Buitrago. Evaluation of phosphate-solubilizing bacteria associated to pastures of Bracharia from acid soils. Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, 2015. http://dx.doi.org/10.21930/agrosavia.informe.2015.5.
Der volle Inhalt der QuelleCytryn, E., Sean F. Brady und O. Frenkel. Cutting edge culture independent pipeline for detection of novel anti-fungal plant protection compounds in suppressive soils. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2022. http://dx.doi.org/10.32747/2022.8134142.bard.
Der volle Inhalt der Quelle