Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RF mapping“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RF mapping" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RF mapping"
Schmitz, B., J. Köszegi, K. Alomari, O. Kugeler und J. Knobloch. „Magnetometric mapping of superconducting RF cavities“. Review of Scientific Instruments 89, Nr. 5 (Mai 2018): 054706. http://dx.doi.org/10.1063/1.5030509.
Der volle Inhalt der QuelleBonagura, V. R., S. E. Artandi, A. Davidson, I. Randen, N. Agostino, K. Thompson, J. B. Natvig und S. L. Morrison. „Mapping studies reveal unique epitopes on IgG recognized by rheumatoid arthritis-derived monoclonal rheumatoid factors.“ Journal of Immunology 151, Nr. 7 (01.10.1993): 3840–52. http://dx.doi.org/10.4049/jimmunol.151.7.3840.
Der volle Inhalt der QuelleOuma, Y., B. Nkwae, D. Moalafhi, P. Odirile, B. Parida, G. Anderson und J. Qi. „COMPARISON OF MACHINE LEARNING CLASSIFIERS FOR MULTITEMPORAL AND MULTISENSOR MAPPING OF URBAN LULC FEATURES“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (30.05.2022): 681–89. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-681-2022.
Der volle Inhalt der QuelleAkbari, Elahe, Ali Darvishi Boloorani, Najmeh Neysani Samany, Saeid Hamzeh, Saeid Soufizadeh und Stefano Pignatti. „Crop Mapping Using Random Forest and Particle Swarm Optimization based on Multi-Temporal Sentinel-2“. Remote Sensing 12, Nr. 9 (03.05.2020): 1449. http://dx.doi.org/10.3390/rs12091449.
Der volle Inhalt der QuelleAbida, Khouloud, Meriem Barbouchi, Khaoula Boudabbous, Wael Toukabri, Karem Saad, Habib Bousnina und Thouraya Sahli Chahed. „Sentinel-2 Data for Land Use Mapping: Comparing Different Supervised Classifications in Semi-Arid Areas“. Agriculture 12, Nr. 9 (09.09.2022): 1429. http://dx.doi.org/10.3390/agriculture12091429.
Der volle Inhalt der QuelleMerfeldas, Audrius, Pranas Kuzas, Darius Gailius, Zilvinas Nakutis, Mindaugas Knyva, Algimantas Valinevicius, Darius Andriukaitis, Mindaugas Zilys und Dangirutis Navikas. „An Improved Near-field Magnetic Probe Radiation Profile Boundaries Assessment for Optimal Radiated Susceptibility Pre-Mapping“. Symmetry 12, Nr. 7 (28.06.2020): 1063. http://dx.doi.org/10.3390/sym12071063.
Der volle Inhalt der QuellePasquali, J. L., A. M. Knapp, A. Farradji und A. Weryha. „Mapping of four light chain-associated idiotopes of a human monoclonal rheumatoid factor.“ Journal of Immunology 139, Nr. 3 (01.08.1987): 818–23. http://dx.doi.org/10.4049/jimmunol.139.3.818.
Der volle Inhalt der QuelleWicaksono, Pramaditya, Prama Ardha Aryaguna und Wahyu Lazuardi. „Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning Classification Algorithms“. Remote Sensing 11, Nr. 11 (29.05.2019): 1279. http://dx.doi.org/10.3390/rs11111279.
Der volle Inhalt der QuelleKwak, Geun-Ho, Chan-won Park, Kyung-do Lee, Sang-il Na, Ho-yong Ahn und No-Wook Park. „Potential of Hybrid CNN-RF Model for Early Crop Mapping with Limited Input Data“. Remote Sensing 13, Nr. 9 (21.04.2021): 1629. http://dx.doi.org/10.3390/rs13091629.
Der volle Inhalt der QuelleKhalighi, Mohammad Mehdi, Brian K. Rutt und Adam B. Kerr. „Adiabatic RF pulse design for Bloch-SiegertB+ mapping“. Magnetic Resonance in Medicine 70, Nr. 3 (05.10.2012): 829–35. http://dx.doi.org/10.1002/mrm.24507.
Der volle Inhalt der QuelleDissertationen zum Thema "RF mapping"
Schwartz, Benjamin M. (Benjamin Matthew). „Mapping bulk electrical properties with non-contact RF measurements“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36118.
Der volle Inhalt der QuelleIncludes bibliographical references (leaf 43).
The human body is composed primarily of dielectric tissue with spatially varying permittivity and conductivity. Traditional MRI does not measure these properties. Instead, the conductivity of the patient is a nuisance, causing unpredictable detuning of coils and field inhomogeneities. This thesis presents a method for mapping the electrodynamic properties of the patient's body with both MR and non-MR techniques. Such mapping has direct applications for medical imaging and SAR calculation.
by Benjamin M. Schwartz.
S.B.
Dalveren, Taylan. „A Study of Sensitivity Mapping Techniques for Multi-Channel MR Coils“. University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1373403690.
Der volle Inhalt der QuelleBrandejsky, Vaclav. „MR scanner independent 3D B1 field mapping of magnetic resonance spectroscopy RF coils using an automated measurement system“. Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15025.
Der volle Inhalt der QuelleRadiofrekventa - spolars känslighetsmönster är viktigt för avbildning med magnetkamera (MRI) och magnetresonansspektroskopi (MRS). Vetskap om RF-spolars känslighet för och förmåga att skapa RF-magnetfält (B1 kan användas för att åstadkomma korrekta excitationsflipvinklar och för att korrigera uppmätta signalstyrkor. Det är också viktigt för att göra MRI och MRS undersökningar snabbare och för att förbättra kvalitén på rekonstruerade bilder. Vi har utvecklat en metod för mätning av B1+ och B1- fält i en testbänk som alternativ till metoder där B1 fältet bestäms inne i magnetkameran. Uppställningen omfattar ett industriellt koordinatbord kontrollerat av PC-baserade program, sökspolar för detektion av B1 fält, en tvåports nätverksanalysator och ett analog till digital omvandlingskort. Mätningen är möjlig att utföra i olika vätskor, exempelvis saltlösning, för att efterlikna olika former och dielektriska egenskaper hos människokroppen.
Brandejsky, Vaclav. „MR scanner independent 3D B1 field mapping of magnetic resonance spectroscopy RF coils using an automated measurement system“. Thesis, Linköping University, Department of Biomedical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15025.
Der volle Inhalt der QuelleWe developed a method for measurement of the B1+/- fields as an alternative approach to B1+/- fields assessment in MR scanner. Our setup incorporates an industrial coordinate table controlled by a PC-based program, search coils, a two--port vector network analyzer and an analog-to-digital (A/D) card. It is possible to measure in various liquid media (for example in saline solution) to mimic different shapes and dielectric properties of the human body.
Radiofrekventa - spolars känslighetsmönster är viktigt för avbildning med magnetkamera (MRI) och magnetresonansspektroskopi (MRS). Vetskap om RF-spolars känslighet för och förmåga att skapa RF-magnetfält (B1 kan användas för att åstadkomma korrekta excitationsflipvinklar och för att korrigera uppmätta signalstyrkor. Det är också viktigt för att göra MRI och MRS undersökningar snabbare och för att förbättra kvalitén på rekonstruerade bilder. Vi har utvecklat en metod för mätning av B1+ och B1- fält i en testbänk som alternativ till metoder där B1 fältet bestäms inne i magnetkameran. Uppställningen omfattar ett industriellt koordinatbord kontrollerat av PC-baserade program, sökspolar för detektion av B1 fält, en tvåports nätverksanalysator och ett analog till digital omvandlingskort. Mätningen är möjlig att utföra i olika vätskor, exempelvis saltlösning, för att efterlikna olika former och dielektriska egenskaper hos människokroppen.
Voigt, Tobias [Verfasser], und O. [Akademischer Betreuer] Dössel. „Quantitative MR Imaging of the Electric Properties and Local SAR based on Improved RF Transmit Field Mapping / Tobias Voigt ; Betreuer: O. Dössel“. Karlsruhe : KIT Scientific Publishing, 2011. http://d-nb.info/1184497532/34.
Der volle Inhalt der QuelleBjörk, Marcus. „Contributions to Signal Processing for MRI“. Doctoral thesis, Uppsala universitet, Avdelningen för systemteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-246537.
Der volle Inhalt der QuelleOkujeni, Akpona. „Quantifying urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2014. http://dx.doi.org/10.18452/17082.
Der volle Inhalt der QuelleThe global dimension of urbanization constitutes a great environmental challenge for the 21st century. Remote sensing is a valuable Earth observation tool, which helps to better understand this process and its ecological implications. The focus of this work was to quantify urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales. Experiments considered innovative methodological developments and novel opportunities in urban research that will be created by the upcoming hyperspectral satellite mission EnMAP. Airborne HyMap data at 3.6 m and 9 m resolution and simulated EnMAP data at 30 m resolution were used to map land cover along an urban-rural gradient of Berlin. In the first part of this work, the combination of support vector regression with synthetically mixed training data was introduced as sub-pixel mapping technique. Results demonstrate that the approach performs well in quantifying thematically meaningful yet spectrally challenging surface types. The method proves to be both superior to other sub-pixel mapping approaches and universally applicable with respect to changes in spatial scales. In the second part of this work, the value of future EnMAP data for urban remote sensing was evaluated. Detailed explorations on simulated data demonstrate their suitability for improving and extending the approved vegetation-impervious-soil mapping scheme. Comprehensive analyses of benefits and limitations of EnMAP data reveal both challenges caused by the high numbers of mixed pixels, when compared to hyperspectral airborne imagery, and improvements due to the greater material discrimination capability when compared to multispectral spaceborne imagery. In summary, findings demonstrate how combining spaceborne imaging spectrometry and machine learning techniques could introduce a new quality to the field of urban remote sensing.
Sandouno, Bernard Tamba. „Amélioration de la précision des cartes de couverture réseau par des techniques de lancer de rayons“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4020.
Der volle Inhalt der QuelleRay Tracing is a deterministic propagation modeling approach that estimates the signal power received in specific geographical locations based on a thorough consideration of the 3D environmental factors that influence signal propagation. This high accuracy of Ray Tracing is however at the cost of a high computational load due to the complexities of the processes within its workflow. This computational demand is characterized by a high memory consumption and a high execution time, making it challenging to efficiently compute the received signal power.Acknowledging the complexity inherent in Ray Tracing, various acceleration techniques have emerged over time to enhance its computational efficiency. These techniques optimize processes within Ray Tracing, facilitating significant reductions in execution time for signal power estimation at individual locations. However, when applied to the generation of Radio Frequency (RF) maps across expansive regions like cities or countries, these acceleration techniques lose their efficiency. This limitation arises from Ray Tracing's original design, tailored for point-to-point signal reception assessment rather than large-scale RF mapping.In response, this thesis proposes optimizations designed specifically for generating accurate and precise RF maps at large scale without incurring excessive computational overhead. By refining all aspects of the Ray Tracing pipeline with a focus on RF mapping, our optimizations aim to address the inefficiencies prevalent in current large-scale RF mapping solutions. Throughout this work, we demonstrate the shortcomings of existing approaches and validate the effectiveness of our optimizations in significantly reducing execution times while maintaining estimation accuracy within acceptable bounds.We first propose an innovative approach to the traditionally complex ray generation process, by effectively minimizing the number of rays launched from an antenna while preserving the accuracy. Tailored to specific site conditions, this method considers the propagation environment when launching rays, in contrast to the traditional approach that launches rays in a brute-force fashion. Further, by implementing this site-specific ray generation technique and re-imagining the reception test process, we achieve a remarkable reduction of nearly 1200 times in Ray Tracing execution time for RF map generation in terrains with slight altitude variations. Extending this solution to diverse terrains, we then introduce comprehensive optimizations across all Ray Tracing processes, meticulously tailored for RF mapping objectives. These enhancements culminate in a 50-fold increase in the speed of large-scale RF map generation across varied terrains, showcasing the versatility and efficiency of our approach
Wells, D. D., I. G. Siebörger und Barry Vivian William Irwin. „Location and mapping of 2.4 GHz RF transmitters“. 2008. http://hdl.handle.net/10962/d1009324.
Der volle Inhalt der QuelleSousa, Duarte Fleming Oliveira de. „Human Sensing and Indoor Location: From coarse to fine detection algorithms based on consumer electronics RF mapping“. Master's thesis, 2017. https://hdl.handle.net/10216/103010.
Der volle Inhalt der QuelleBuchteile zum Thema "RF mapping"
Ayad, Mustafa, und Richard Voyles. „RF Mapping for Sensor Nodes Connectivity and Communication Signal Recovery“. In Lecture Notes in Networks and Systems, 666–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80119-9_43.
Der volle Inhalt der QuelleYazgan, Erdem, und Volkan Akan. „Conformal Mapping Techniques“. In Encyclopedia of RF and Microwave Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471654507.eme552.
Der volle Inhalt der QuelleRosenheck, Shimon, Jeffrey Banker, Alexey Weiss und Zehava Sharo. „Electromagnetic Mapping During Complex RF Ablations“. In Cardiac Arrhythmias - New Considerations. InTech, 2012. http://dx.doi.org/10.5772/30391.
Der volle Inhalt der QuelleSharma, Shriya, Rohan M. Goswami, Juan Leoni und Jose Ruiz. „New Insights into Cardiac Ablation“. In Atrial Fibrillation - Current Management and Practice [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1005656.
Der volle Inhalt der Quelle„Appendix H Synthesis of Resonant-Type Metamaterial Transmission Lines by Means of Aggressive Space Mapping“. In Artificial Transmission Lines for RF and Microwave Applications, 491–502. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119058403.app8.
Der volle Inhalt der QuelleKadir, Herdawatie Abdul, und Mohd Rizal Arshad. „A Framework for RF-Visual SLAM for Cooperative Multi-Agent System“. In Advances in Computational Intelligence and Robotics, 697–727. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7387-8.ch022.
Der volle Inhalt der QuelleMohammadpour, Pegah, Crismeire Isbaex, Emilio Chuvieco, Domingos Xavier Viegas und Carlos Viegas. „Vegetation Mapping with Random Forest using Sentinel 2- A case study for Lousã region, Portugal“. In Advances in Forest Fire Research 2022, 444–62. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_71.
Der volle Inhalt der QuelleHubert, G., und S. Silvia Priscila. „Comprehensive Prediction of Retinopathy in Preterm Infants Using Deep Learning Approaches“. In Advances in Computer and Electrical Engineering, 353–70. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3739-4.ch018.
Der volle Inhalt der QuelleHomère Ngandam Mfondoum, Alfred, Igor Casimir Njombissie Petcheu, Frederic Chamberlain Lounang Tchatchouang, Luc Moutila Beni, Mesmin Tchindjang und Jean Valery Mefire Mfondoum. „Dynamics, Anomalies and Boundaries of the Forest-Savanna Transition: A Novel Remote Sensing-Based Multi-Angles Methodology Using Google Earth Engine“. In GIS and Spatial Analysis [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105074.
Der volle Inhalt der QuelleMoskal, Anna. „Ablations, Cryotherapy, and Maze Procedure“. In Advanced Anesthesia Review, herausgegeben von Alaa Abd-Elsayed, 327—C124.S9. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780197584521.003.0123.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RF mapping"
Kim, Sean, Hailey H. Kim und Brian Choi. „Exploiting RF Signature in 5G Simultaneous Localization and Mapping“. In 2024 IEEE Integrated STEM Education Conference (ISEC), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/isec61299.2024.10665037.
Der volle Inhalt der QuelleLi, Yiming, Zeyu Li, Zhihui Gao und Tingjun Chen. „Geo2SigMap: High-Fidelity RF Signal Mapping Using Geographic Databases“. In 2024 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 277–85. IEEE, 2024. http://dx.doi.org/10.1109/dyspan60163.2024.10632773.
Der volle Inhalt der QuelleTukimin, Roha, Syarfa Zahirah Sapuan, Wan Syazlin Wan Yunoh und Nur Afrina Zainal. „Measurement and Mapping of Radiofrequency Electromagnetic Field (RF-EMF) Radiation Exposure in Malaysia's Environment“. In 2024 IEEE 15th Control and System Graduate Research Colloquium (ICSGRC), 23–28. IEEE, 2024. http://dx.doi.org/10.1109/icsgrc62081.2024.10690979.
Der volle Inhalt der QuelleRosine, Germanicus, und El-Hassani Othman. „Machine Learning for Predicting DataCube Atomic Force Microscope (AFM)—MultiDAT-AFM“. In ISTFA 2024, 351–57. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0351.
Der volle Inhalt der QuelleRütschlin, M., und V. Sokol. „Complex permittivity extraction using a space-mapping technique“. In 2nd Annual Passive RF and Microwave Components Seminar. IET, 2011. http://dx.doi.org/10.1049/ic.2011.0198.
Der volle Inhalt der QuelleAyad, Mustafa, Jun Jason Zhang, Richard Voyles und Mohammad H. Mahoor. „Mobile robot connectivity maintenance based on RF mapping“. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013). IEEE, 2013. http://dx.doi.org/10.1109/iros.2013.6696840.
Der volle Inhalt der QuelleBozkurt, Sinem, Ahmet Yazici, Serkan Gunal und Ugur Yayan. „A survey on RF mapping for indoor positioning“. In 2015 23th Signal Processing and Communications Applications Conference (SIU). IEEE, 2015. http://dx.doi.org/10.1109/siu.2015.7130275.
Der volle Inhalt der QuelleSchuette, Jason, Barry Fell, John Chapin, Steven Jones, James Stutler, Mark Birchler und Dennis Roberson. „Performance of RF mapping using opportunistic distributed devices“. In MILCOM 2015 - 2015 IEEE Military Communications Conference. IEEE, 2015. http://dx.doi.org/10.1109/milcom.2015.7357677.
Der volle Inhalt der QuelleMurakowski, Janusz A., Garrett Schneider und Dennis W. Prather. „Optical processing for phased-array and beamspace mapping“. In Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XV, herausgegeben von Laurence P. Sadwick und Tianxin Yang. SPIE, 2022. http://dx.doi.org/10.1117/12.2613480.
Der volle Inhalt der QuelleJaw, Siow Wei, und Mazlan Hashim. „Accuracy of data acquisition approaches with ground penetrating radar for subsurface utility mapping“. In 2011 IEEE International RF and Microwave Conference (RFM). IEEE, 2011. http://dx.doi.org/10.1109/rfm.2011.6168691.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RF mapping"
Alwan, Iktimal, Dennis D. Spencer und Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, Dezember 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Der volle Inhalt der Quelle