Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „RF field sensors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "RF field sensors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "RF field sensors"
Deprez, Kenneth, Loek Colussi, Erdal Korkmaz, Sam Aerts, Derek Land, Stephan Littel, Leen Verloock, David Plets, Wout Joseph und John Bolte. „Comparison of Low-Cost 5G Electromagnetic Field Sensors“. Sensors 23, Nr. 6 (21.03.2023): 3312. http://dx.doi.org/10.3390/s23063312.
Der volle Inhalt der QuelleSong, Zhenfei, Wanfeng Zhang, Qi Wu, Huihui Mu, Xiaochi Liu, Linjie Zhang und Jifeng Qu. „Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement“. Sensors 18, Nr. 10 (22.09.2018): 3205. http://dx.doi.org/10.3390/s18103205.
Der volle Inhalt der QuelleThormählen, Lars, Dennis Seidler, Viktor Schell, Frans Munnik, Jeffrey McCord und Dirk Meyners. „Sputter Deposited Magnetostrictive Layers for SAW Magnetic Field Sensors“. Sensors 21, Nr. 24 (15.12.2021): 8386. http://dx.doi.org/10.3390/s21248386.
Der volle Inhalt der QuelleKim, Sangkil, Manos Tentzeris und Apostolos Georgiadis. „Hybrid Printed Energy Harvesting Technology for Self-Sustainable Autonomous Sensor Application“. Sensors 19, Nr. 3 (11.02.2019): 728. http://dx.doi.org/10.3390/s19030728.
Der volle Inhalt der QuellePekgor, Metin, Reza Arablouei, Mostafa Nikzad und Syed Masood. „Displacement Estimation via 3D-Printed RFID Sensors for Structural Health Monitoring: Leveraging Machine Learning and Photoluminescence to Overcome Data Gaps“. Sensors 24, Nr. 4 (15.02.2024): 1233. http://dx.doi.org/10.3390/s24041233.
Der volle Inhalt der QuelleAriana, Aly Nur, und Zainal Abidin. „RANCANG BANGUN SISTEM IRIGASI PEMBIBITAN PENGKONDISIAN LAHAN PADI BERBASIS ATMEGA328 DAN MONITORING JARAK JAUH DENGAN RADIO FREKUENSI 433 MHZ“. Jurnal Teknika 10, Nr. 1 (02.05.2018): 999. http://dx.doi.org/10.30736/teknika.v10i1.207.
Der volle Inhalt der QuelleRushton, Lucas Martin, Laura Mae Ellis, Jake David Zipfel, Patrick Bevington und Witold Chalupczak. „Performance of a Radio-Frequency Two-Photon Atomic Magnetometer in Different Magnetic Induction Measurement Geometries“. Sensors 24, Nr. 20 (16.10.2024): 6657. http://dx.doi.org/10.3390/s24206657.
Der volle Inhalt der QuelleChou, Jung-Chuan, und Chien-Cheng Chen. „WEIGHTED DATA FUSION FOR FLEXIBLE pH SENSORS ARRAY“. Biomedical Engineering: Applications, Basis and Communications 21, Nr. 06 (Dezember 2009): 365–69. http://dx.doi.org/10.4015/s1016237209001465.
Der volle Inhalt der QuelleZhang, Mingguang, Mengyun Li, Wei Xu, Fan Zhang, Daojin Yao, Xiaoming Wang und Wentao Dong. „Soft Wireless Passive Chipless Sensors for Biological Applications: A Review“. Biosensors 15, Nr. 1 (26.12.2024): 6. https://doi.org/10.3390/bios15010006.
Der volle Inhalt der QuelleTien, Chuen-Lin, Tzu-Chi Mao und Chi-Yuan Li. „Lossy Mode Resonance Sensors Fabricated by RF Magnetron Sputtering GZO Thin Film and D-Shaped Fibers“. Coatings 10, Nr. 1 (01.01.2020): 29. http://dx.doi.org/10.3390/coatings10010029.
Der volle Inhalt der QuelleDissertationen zum Thema "RF field sensors"
Duverger, Romain. „Métrologie de champs électromagnétiques RF par spectroscopie de déplétion de piège à partir d'atomes froids de Rydberg“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP154.
Der volle Inhalt der QuelleRydberg atoms are atoms excited to states with a very high principal quantum number, where the valence electron orbits very far from the nucleus. This large distance imparts exceptional properties to Rydberg atoms compared to ordinary atoms, which has made them central to many developments and applications of modern experimental quantum physics. In particular, they exhibit transitions in the radiofrequency (RF) and terahertz (THz) domains with very large dipole matrix elements, making them extremely sensitive to electromagnetic fields in these frequency domains. This has led over the last ten years to the emergence of a new technology of RF and THz field sensors, where the amplitude of the field is measured by performing electromagnetically induced transparency spectroscopy of the Autler-Townes doublet induced by the interaction between the field and Rydberg states of atoms in a thermal vapor. Such sensors offer several advantages over classic antennas, including a greater sensitivity, a wider frequency range, a size independent from the frequency of the measured field, a significantly reduced need for calibration, and the ability to measure, in addition to the amplitude, the phase and the polarization. All these benefits make Rydberg atoms-based RF field sensors excellent candidates for applications in telecommunications, radar systems, and the space sector. Currently, these sensors are the subject to numerous works aiming at improving their performance in terms of sensitivity, accuracy, measurement bandwidth or spatial resolution. The use of cold atoms instead of thermal vapors represents a promising avenue in these goals, due to their better coherence and strongly reduced Doppler effect. Additionally, cold atoms are suitable for other forms of spectroscopy that are potentially more robust in certain aspects. This thesis focuses on the experimental study of a new approach for RF field sensing using cold Rydberg atoms, based on trap-loss spectroscopy. It consists in making the RF field interact with a set of ⁸⁷Rb atoms cooled and confined in a magneto-optical trap, and in probing the Autler-Townes doublet created by the field through a trap depletion effect. The mechanism responsible for the losses is the ionization of the atoms under the action of background blackbody radiation. This study involved the development of an entire experimental setup to perform trap-loss spectroscopy. Despite a low measurement bandwidth, the method proposed here has demonstrated a deviation from linearity of less than 2%, a sensitivity of the order of 250 µV/cm/Hz1/2, as well as an absence of drifts over several hours of measurement, with a resolution of the order of 5 µV/cm. Moreover, this method is easier to implement than other approaches involving cold atoms, and theoretically allows for determining both the amplitude and the frequency of the field. In this manuscript, we will describe the principle, setup and implementation of our experimental apparatus, present the results of the measurement performed with it, and then analyze its metrological performance, advantages and limitations
Karolak, Dean. „Système de radiocommunication télé-alimenté par voie radiofréquence à 2.45 GHz“. Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0392/document.
Der volle Inhalt der QuelleWireless Powered Receivers (WPR) hold a promising future for generating a small amount ofelectrical DC energy to drive full or partial circuits in wirelessly communicating electronic devices.Important applications such as RFIDs and WSNs operating at UHF and SHF bands have emerged,requiring a significant effort on the design of high efficient WPRs to extend the operating range or thelifetime of these portable applications. In this context, integrated rectifiers and antennas are of aparticular interest, since they are responsible for the energy conversion task. This thesis work aims tofurther the state-of-the-art throughout the design and realization of high efficient WPRs from the antennaup to the storage of the converted DC power, exploring the interfacing challenges with their fullyintegration into PCBs
Buchteile zum Thema "RF field sensors"
Milivinti, M., M. Amadini, F. Ballo, M. Gobbi und G. Mastinu. „Force Sensors for the Active Safety of Road Vehicles“. In Lecture Notes in Mechanical Engineering, 940–46. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_132.
Der volle Inhalt der QuelleRajasekaran, K., Anitha Mary Xavier und R. Jegan. „Smart Technology for Non Invasive Biomedical Sensors to Measure Physiological Parameters“. In Biomedical Engineering, 749–78. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3158-6.ch034.
Der volle Inhalt der QuelleRajasekaran, K., Anitha Mary Xavier und R. Jegan. „Smart Technology for Non Invasive Biomedical Sensors to Measure Physiological Parameters“. In Handbook of Research on Healthcare Administration and Management, 318–47. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-0920-2.ch019.
Der volle Inhalt der Quelle„Development of a field useable interrogation system for RF cavity wireless sensors“. In Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM, 1041–42. CRC Press, 2015. http://dx.doi.org/10.1201/b18175-432.
Der volle Inhalt der QuelleDe, Swades, und Shouri Chatterjee. „Network Energy Driven Wireless Sensor Networks“. In Biologically Inspired Networking and Sensing, 145–57. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-61350-092-7.ch008.
Der volle Inhalt der QuelleKadyan, Sunil, Yogita Sharma, Atul Kumar Agnihotri, Veer Bhadra Pratap Singh, Rakshit Kothari und Fateh Bahadur Kunwar. „Human-Centric AI Applications for Remote Patient Monitoring“. In Advances in Healthcare Information Systems and Administration, 117–37. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1662-7.ch006.
Der volle Inhalt der QuelleMohanbabu, A., S. Maheswari, N. Vinodhkumar, P. Murugapandiyan und R. Saravana Kumar. „Advancements in GaN Technologies: Power, RF, Digital and Quantum Applications“. In Nanoelectronic Devices and Applications, 1–28. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815238242124010003.
Der volle Inhalt der QuellePadmavathy, C., Dankan Gowda V., Vaishali Narendra Agme, Algubelly Yashwanth Reddy und D. Palanikkumar. „An Exhaustive Analysis of Energy Harvesting Absorbers and Battery Charging Systems for the Internet of Things“. In Advances in Computer and Electrical Engineering, 166–86. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-4974-5.ch009.
Der volle Inhalt der QuelleRazvan Radulescu, Ion, Razvan Scarlat, Mihaela Jomir, Catalin Grosu, Emilia Visileanu, Benny Malengier und Xianyi Zeng. „E-Textiles to Promote Interdisciplinary Education“. In Education and Human Development. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.112898.
Der volle Inhalt der QuelleRaja, Chithik, Hemachandran K., V. Devarajan und K. Jarina Begum. „Predict Network Intruder Using Machine Learning Model and Classification“. In Artificial Intelligence and Knowledge Processing: Methods and Applications, 150–71. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815165739123010013.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "RF field sensors"
Holloway, Christopher L., Matthew T. Simons, Nikunjkumar Prajapati, Samuel Berweger, Andrew P. Rotunno, Alexandra B. Artusio-Glimpse, Noah Schlossberger et al. „Rydberg Atom-Based Sensors: Transforming SI-Traceable Measurements from RF fields to Thermometry“. In 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 122. IEEE, 2024. http://dx.doi.org/10.23919/inc-usnc-ursi61303.2024.10632330.
Der volle Inhalt der QuelleBradley, Lee W., Yusuf S. Yaras und F. Levent Degertekin. „Acousto-Optic Electric Field Sensor Based on Thick-Film Piezoelectric Transducer Coated Fiber Bragg Grating“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.f1.2.
Der volle Inhalt der QuelleWilson, Mark L., Dan J. Bartnik und Mark P. Bendett. „Design of a Totally Dielectric Fiber Optic RF Electric Field Sensor“. In Optical Fiber Sensors. Washington, D.C.: OSA, 1988. http://dx.doi.org/10.1364/ofs.1988.thaa3.
Der volle Inhalt der QuelleTakemura, Yasushi. „Resonant circuits for thermal therapy excited by RF magnetic field from MRI“. In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411094.
Der volle Inhalt der QuelleSchneider, T., U. Hempel, S. Doerner, P. R. Hauptmann, D. McCann und J. F. Vetelino. „Compact RF Impedance-Spectrum-Analyzer For Lateral Field Excited Liquid Acoustic Wave Sensors“. In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388391.
Der volle Inhalt der QuelleZhao, Cheng, Jing Song, Lei Han und Qing-An Huang. „An equivalent-circuit method for coupled-field modeling of distributed RF MEMS devices and packages“. In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411194.
Der volle Inhalt der QuelleDe, S., A. Kawatra und S. Chatterjee. „On the Feasibility of Network RF Energy Operated Field Sensors“. In ICC 2010 - 2010 IEEE International Conference on Communications. IEEE, 2010. http://dx.doi.org/10.1109/icc.2010.5502332.
Der volle Inhalt der QuelleXu, Kun, und Xiuyan Ren. „Effect of RF field intensity on resonance spectrum of rubidium optically pumped magnetometer“. In Second International Conference on Sensors and Information Technology (ICSI 2022), herausgegeben von Lijia Pan. SPIE, 2022. http://dx.doi.org/10.1117/12.2637503.
Der volle Inhalt der QuelleCao, Ji, und Adrian M. Ionescu. „Self-aligned double-gate suspended-body carbon nanotube field-effect-transistors for RF applications“. In TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969810.
Der volle Inhalt der QuelleLahalle, Aude, Fabrizio Fontaneto und Tony Arts. „CFD Driven Analysis of a Multi-Port Pressure Probe for Real Engine Testing“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64166.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "RF field sensors"
Dippold, Marcel, Makrina A. Chairopoulou, Maximilian Drexler,, Michael Scheiber und Holger Ruckdäschel. From vibrating molecules to a running shoe: connecting dielectric properties with process feedback in radio-frequency welding of TPU bead foams. Universidad de los Andes, Dezember 2024. https://doi.org/10.51573/andes.pps39.gs.pfm.1.
Der volle Inhalt der QuelleGee, G., und J. Skorpik. CRADA with Instrumentation Northwest, Inc. and Pacific Northwest National Laboratory (PNL-123): Field Demonstration of a Water Potential Sensor and an RF Telemetry System for Use in Irrigated Agriculture. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/770369.
Der volle Inhalt der Quelle