Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Reusable Launchers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Reusable Launchers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Reusable Launchers"
Baiocco, P., und Ch Bonnal. „Technology demonstration for reusable launchers“. Acta Astronautica 120 (März 2016): 43–58. http://dx.doi.org/10.1016/j.actaastro.2015.11.032.
Der volle Inhalt der QuelleLobanovsky, Yu I. „Efficiency analysis of reusable aerospace launchers“. Aerospace Science and Technology 1, Nr. 1 (Januar 1997): 37–46. http://dx.doi.org/10.1016/s1270-9638(97)90022-5.
Der volle Inhalt der QuelleChelaru, Teodor-Viorel, Valentin Pană und Costin Ene. „Performance Evaluation for Launcher Testing Vehicle“. Aerospace 9, Nr. 9 (09.09.2022): 504. http://dx.doi.org/10.3390/aerospace9090504.
Der volle Inhalt der QuelleSimplício, Pedro, Andrés Marcos und Samir Bennani. „Guidance of Reusable Launchers: Improving Descent and Landing Performance“. Journal of Guidance, Control, and Dynamics 42, Nr. 10 (Oktober 2019): 2206–19. http://dx.doi.org/10.2514/1.g004155.
Der volle Inhalt der QuelleD’Angelo, Salvatore, Edmondo Minisci, Daniele Di Bona und Luciano Guerra. „Optimization Methodology for Ascent Trajectories of Lifting-Body Reusable Launchers“. Journal of Spacecraft and Rockets 37, Nr. 6 (November 2000): 761–67. http://dx.doi.org/10.2514/2.3648.
Der volle Inhalt der QuelleMusso, Girolamo, Iara Figueiras, Héléna Goubel, Afonso Gonçalves, Ana Laura Costa, Bruna Ferreira, Lara Azeitona et al. „A Multidisciplinary Optimization Framework for Ecodesign of Reusable Microsatellite Launchers“. Aerospace 11, Nr. 2 (31.01.2024): 126. http://dx.doi.org/10.3390/aerospace11020126.
Der volle Inhalt der QuelleDuparcq, J. L., E. Hermant und D. Scherrer. „Turbojet-type engines for the airbreathing propulsion of reusable winged launchers“. Acta Astronautica 29, Nr. 1 (Januar 1993): 41–50. http://dx.doi.org/10.1016/0094-5765(93)90068-8.
Der volle Inhalt der QuelleGulczyński, Mateusz T., Robson H. S. Hahn, Jan C. Deeken und Michael Oschwald. „Turbopump Parametric Modelling and Reliability Assessment for Reusable Rocket Engine Applications“. Aerospace 11, Nr. 10 (02.10.2024): 808. http://dx.doi.org/10.3390/aerospace11100808.
Der volle Inhalt der QuelleSimplício, Pedro, Andrés Marcos und Samir Bennani. „Reusable Launchers: Development of a Coupled Flight Mechanics, Guidance, and Control Benchmark“. Journal of Spacecraft and Rockets 57, Nr. 1 (Januar 2020): 74–89. http://dx.doi.org/10.2514/1.a34429.
Der volle Inhalt der QuelleBonnal, Ch, und M. Caporicci. „Future reusable launch vehicles in europe: the FLTP (Future Launchers Technologies Programme)“. Acta Astronautica 47, Nr. 2-9 (Juli 2000): 113–18. http://dx.doi.org/10.1016/s0094-5765(00)00050-3.
Der volle Inhalt der QuelleDissertationen zum Thema "Reusable Launchers"
Berry, W. „Reusable launchers“. Thesis, Cranfield University, 1993. http://hdl.handle.net/1826/3902.
Der volle Inhalt der QuelleZaragoza, Prous Guillermo. „Guidance and Control for Launch and Vertical Descend of Reusable Launchers using Model Predictive Control and Convex Optimisation“. Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81354.
Der volle Inhalt der QuelleGibart, Jules. „Non-linear stability of a liquid propelled rocket engine in closed loop regulation“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST110.
Der volle Inhalt der QuelleWith the development of reusable rocket engines, the operating requirements of the various components in an engine have significantly increased. While a non-reusable engine was designed for a limited number of operating points, a reusable engine must meet requirements over a wide range of points to perform complex maneuvers. Consequently, rocket engine control laws have evolved similarly, with the introduction of closed-loop control laws. Although many studies have been conducted on control laws, few works focus on the stability of the engine in closed-loop control. In this context, the objective of this work is to propose a demonstration of the stability of a rocket engine model, as well as a controller that guarantees the stability of the model. First, a model of a liquid propelled rocket engine is proposed under a state-space form. Although more common, this type of modeling does not allow for an easy stability analysis due to its highly nonlinear terms. In this context, the use of a Lyapunov function proves to be cumbersome, and a reformulation of the model is considered, in the form of a Port-Hamiltonian model, more suited for stability analysis of the system. A second chapter introduces the concept of the Port-Hamiltonian model. This type of model highlights the energy transfers that occur between the various components of a system and is built with a fixed geometric structure. These characteristics allow for a direct study of the passivity of a system, a tool for stability analysis the stability. The reformulation allows for the identification of a characteristic function of a Port-Hamiltonian system, the Hamiltonian function, which can be used to prove the passivity of a system and can be formulated as a Lyapunov function. This demonstration provides stability conditions for the system as well as the controller applied in the closed-loop system. In cases where a direct demonstration of passivity is not possible, a controller can be constructed to ensure the passivity of the closed-loop system. To endow the rocket engine model with passivity properties, the third chapter presents passivity-based control (PBC) theory. The principle of such a controller is to ensure the stability of a system by making the closed-loop system passive. Coupled with Port-Hamiltonian systems theory, however, this controller also allows for modification of the Hamiltonian geometric structure to reformulate a system into Port-Hamiltonian form. This controller makes the system passive around a desired operating point, which can be changed over time. Thus, this controller enables trajectory tracking with passivity guarantees over time. The fourth chapter proposes a different approach to establish a stabilizing controller using contraction theory. The contraction property of a system indicates its ability to rapidly converge towards a reference trajectory. This property represents a form of exponential stability, which is more robust than stability through passivation. Moreover, the controller can be easily implemented by solving linear matrix inequalities. Finally, the results of this work are presented through simulations on MATLAB Simulink, allowing for conclusions on the various controllers presented. A simple proportional-integralderivative (PID) controller is constructed for comparison. The results show that the designed controllers offer stabilizing properties, while the PID controller is unstable in certain operating regions. The passivity-based controller extends the stability domain of the system, and the contraction-based controller prevents the system from leaving the stability domain of the original system
MABBOUX, ROMAIN. „Optimization of the pressurization system of the Themis reusable rocket first stage demonstrator“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301295.
Der volle Inhalt der QuelleUtformningen av komplexa system, som till exempel en bärraket, eller delsystem som dess trycksättningssystem, är känd för att vara krävande och kostsam, särskilt inom rymdteknikområdet. Den senaste tidens uppkomst av nya aktörer på detta område har dock förändrat spelregler då dessa system tvingas uppfylla allt fler krav (billiga, effektiva, snabbt producerade, estetiska, miljövänliga etc.) kunna vara konkurrenskraftiga på marknaden. Av dessa skäl måste ingenjörer nu mer än någonsin beakta hela bilden av ett system eller delsystem för att kunna optimera det. I detta sammanhang syftar detta dokument till att presentera metoden och resultaten från optimeringen av trycksättningssystemet för en återanvändbar rakets första steg som heter Themis 3. Modelleringen av trycksättningssystemet har genomförts med hjälp av ett systemmodelleringsverktyg som kallas Geeglee. För att täcka in så många effekter av detta system som möjligt har en viktig del av raketsteget beaktats och modellerats (från trycksättningsgaserna till drivmedelstankarna, via tryck- och drivmedelsmatningsledningarna). Tre krav på hög nivå har identifierats som mycket viktiga för avvägningen vid utformningen av trycksättningssystem konstruktion: den totala masspåverkan, den totala icke-rekursiva kostnaden och den totala rekursiva kostnaden. Denna optimering har framför allt gjort det möjligt att bekräfta vissa välkända resultat, dvs. att exogena trycksättningssystem ger en mindre masspåverkan på fordonet, på bekostnad av en högre RC jämfört med autogena system.
Bulut, Jane. „Design and CFD analysis of the demonstrator aerospike engine for a small satellite launcher application“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Den vollen Inhalt der Quelle findenLantelme, Melissa. „Modélisation des grandeurs aérothermodynamiques pariétales : application à la rentrée atmosphérique des lanceurs réutilisables“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0025.
Der volle Inhalt der QuelleFor reusable launch vehicles critical aerothermal loads occur on the descent trajectory in the hypersonic continuum regime. Thus, for the pre-design phase of the mission preparation, it is essential to have advanced models with low response time (CPU time) at one’s disposal to predict the heat fluxes on the vehicle’s surface. This is necessary to make informed decisions on trade-offs required between system, aerothermal and trajectory optimisation aspects. The objective of this thesis is to investigate whether machine learning techniques offer additional value in the development of such a model predicting the wall heat flux distribution. For this, we propose a method which consists of two consecutive surrogate models. The first one provides a method of nondimensionalisation, to enable the prediction of heat flux independent of the flight points at different altitudes and freestream conditions. The second surrogate model maps four geometric and pressure based dimensionless input variables to the dimensionless heat flux output variable. This correlation is modelled with neural networks. In order to analyse the prediction accuracy, capabilities and limitations, we apply the proposed method to the SpaceLiner concept. For this, we build a database with Computational fluid dynamics (CFD) simulations which contains data from different flight points and orientations of the SpaceLiner orbiter stage. The nondimensionalisation model of the stagnation point heat flux is build based on the Lepage-Vérant model and Kriging and permits its prediction with an accuracy of a mean relative error of 1.9% compared to the results of CFD equations. The surrogate model based on neural networks for the prediction of the heat flux distribution at the current development state complies to our objective for the convex zones and partially for the flat zones if we disregard the very low heat flux zones and complex physical phenomena such as shock-shock interactions. These results ensure better or equivalent prediction accuracy as existing pre-design tools. The database was unsuited to developed a reliable model for the concave zones. Overall interpolation and close proximity extrapolation to different flight points for the given vehicle is possible. However further generalisation towards different vehicle shapes remain unreachable with the current setup. The proposed method has demonstrated potential to be integrated in the pre-design process
Bücher zum Thema "Reusable Launchers"
Gibbins, Martin N. Systems integration and demonstration of advanced reusable structure for ALS. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Den vollen Inhalt der Quelle findenCenter, NASA Glenn Research, Hrsg. Advanced electric propulsion for RLV launched geosynchronous spacecraft. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenAdvanced electric propulsion for RLV launched geosynchronous spacecraft. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenReentry: SpaceX, Elon Musk, and the Reusable Rockets that Launched a Second Space Age. BenBella Books, Inc., 2024.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Reusable Launchers"
van Pelt, Michel. „Reusable launchers“. In Dream Missions, 45–85. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53941-6_3.
Der volle Inhalt der QuelleSalt, David J. „Could a Subsonic Air-Launched Reusable Launch Vehicle (RLV) Enable a Paradigm Shift in Space Operations?“ In Space Operations: Innovations, Inventions, and Discoveries, 185–217. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015. http://dx.doi.org/10.2514/5.9781624101991.0185.0218.
Der volle Inhalt der QuelleKislykh, V. V., und I. A. Reshetin. „Afterbody Effects Study on Energia Reusable Launcher Models. Selection of Jet Propulsive Masses Parameters Within Jet Streams Ejecting Model“. In Separated Flows and Jets, 851–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84447-8_105.
Der volle Inhalt der QuelleYeager, Kenneth R. „Program Evaluation: This Is Rocket Science“. In Evidence-Based Practice Manual: Research and Outcome Measures in Health and Human Services, 647–53. Oxford University PressNew York, NY, 2004. http://dx.doi.org/10.1093/oso/9780195165005.003.0071.
Der volle Inhalt der QuelleKoshova, Svitlana. „Innovative Trends in the Creation of Rocket and Spacecraft Equipment for the Purpose of Enhancement of National Security“. In Стратегія сучасного розвитку України: синтез правових, освітніх та економічних механізмів : колективна монографія / за загальною редакцією професора Старченка Г. В., 215–27. ГО «Науково-освітній інноваційний центр суспільних трансформацій», 2022. http://dx.doi.org/10.54929/monograph-12-2022-05-01.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Reusable Launchers"
Denaro, Angelo, Elena Brach Prever und Marco Nebiolo. „Developments on Cryogenic Insulations for Reusable Launchers“. In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3436.
Der volle Inhalt der QuelleDenaro, A., E. Brach Prever, M. Nebiolo und H. Ritter. „Screening Tests on Cryogenic Insulations for Reusable Launchers“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2899.
Der volle Inhalt der QuelleDenaro, A., und H. Ritter. „Developments on Cryogenic Tank Insulation for Reusable Launchers“. In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2004. http://dx.doi.org/10.4271/2004-01-2565.
Der volle Inhalt der QuelleLiu, Zibo, und Ran Zhang. „Actuator-constrained Trajectory Optimization for Reusable Launchers’ Landing“. In 2022 13th Asian Control Conference (ASCC). IEEE, 2022. http://dx.doi.org/10.23919/ascc56756.2022.9828171.
Der volle Inhalt der QuelleAngelino, E., D. Dosio und G. Borriello. „Reusable launchers tank structures - Requirements definition and experimental development“. In 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1592.
Der volle Inhalt der QuelleWulz, H., U. Trabandt, H. Wulz und U. Trabandt. „Large integral hot CMC structures designed for future reusable launchers“. In 32nd Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2485.
Der volle Inhalt der QuelleSippel, Martin, Arnin Herbertz und Holger Burkhardt. „Reusable Booster Stages: A Potential Concept for Future European Launchers“. In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3242.
Der volle Inhalt der QuelleKostromin, S. „Cost effectiveness estimates of the partially reusable launchers family with uniform components“. In 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-4887.
Der volle Inhalt der QuelleSudmeijer, Kees, Arjen Kloosterman, Benedict Lefeber und Cyril Wentzel. „Technology Development for Metallic Hot Structures in Aerodynamic Control Surfaces of Reusable Launchers“. In AIAA/AAAF 11th International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-5161.
Der volle Inhalt der QuelleIannelli, Andrea, Dimitris Gkouletsos und Roy S. Smith. „Robust Control Design for Flexible Guidance of the Aerodynamic Descent of Reusable Launchers“. In AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-2171.
Der volle Inhalt der Quelle