Zeitschriftenartikel zum Thema „Resonant inelastic X-Ray“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Resonant inelastic X-Ray.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Resonant inelastic X-Ray" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Abbamonte, Peter. „Resonant Inelastic X-ray Scattering“. Synchrotron Radiation News 25, Nr. 4 (30.07.2012): 2. http://dx.doi.org/10.1080/08940886.2012.700840.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Platzman, P. M., und E. D. Isaacs. „Resonant inelastic x-ray scattering“. Physical Review B 57, Nr. 18 (01.05.1998): 11107–14. http://dx.doi.org/10.1103/physrevb.57.11107.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ma, Yanjun. „X-ray resonant inelastic scattering“. Journal of Electron Spectroscopy and Related Phenomena 79 (Mai 1996): 131–34. http://dx.doi.org/10.1016/0368-2048(96)02819-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Caciuffo, Roberto, und Gerard H. Lander. „X-ray synchrotron radiation studies of actinide materials“. Journal of Synchrotron Radiation 28, Nr. 6 (01.11.2021): 1692–708. http://dx.doi.org/10.1107/s1600577521009413.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
By reviewing a selection of X-ray diffraction (XRD), resonant X-ray scattering (RXS), X-ray magnetic circular dichroism (XMCD), resonant and non-resonant inelastic scattering (RIXS, NIXS), and dispersive inelastic scattering (IXS) experiments, the potential of synchrotron radiation techniques in studying lattice and electronic structure, hybridization effects, multipolar order and lattice dynamics in actinide materials is demonstrated.
5

van den Brink, Jeroen, und Michel van Veenendaal. „Magnetic Resonant Inelastic X-ray Scattering“. Synchrotron Radiation News 25, Nr. 4 (30.07.2012): 29–32. http://dx.doi.org/10.1080/08940886.2012.700845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hill, J. P., C. C. Kao, W. A. L. Caliebe, M. Matsubara, A. Kotani, J. L. Peng und R. L. Greene. „Resonant Inelastic X-Ray Scattering inNd2CuO4“. Physical Review Letters 80, Nr. 22 (01.06.1998): 4967–70. http://dx.doi.org/10.1103/physrevlett.80.4967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Harada, Yoshihisa. „Resonant Inelastic X-ray Scattering (RIXS)“. Synchrotron Radiation News 31, Nr. 2 (04.03.2018): 2. http://dx.doi.org/10.1080/08940886.2018.1435947.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hämäläinen, K., und S. Manninen. „Resonant and non-resonant inelastic x-ray scattering“. Journal of Physics: Condensed Matter 13, Nr. 34 (09.08.2001): 7539–55. http://dx.doi.org/10.1088/0953-8984/13/34/306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kao, Chi-Chang. „Workshop on inelastic and resonant inelastic x-ray scattering“. Synchrotron Radiation News 10, Nr. 5 (September 1997): 8–9. http://dx.doi.org/10.1080/08940889708260906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ishii, K., K. Ikeuchi, I. Jarrige, J. Mizuki, H. Hiraka, K. Yamada, K. Tsutsui et al. „Resonant inelastic X-ray scattering of La2Cu0.95Ni0.05O4“. Physica C: Superconductivity and its Applications 470 (Dezember 2010): S155—S157. http://dx.doi.org/10.1016/j.physc.2009.11.171.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Ågren, Hans, Yi Luo, Faris Gel'mukhanov, Jinghua Guo, Per Skytt, Nial Wassdahl und Joseph Nordgren. „Symmetry selective resonant inelastic X-ray scattering“. Physica B: Condensed Matter 208-209 (März 1995): 105–7. http://dx.doi.org/10.1016/0921-4526(94)01009-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Shigemoto, A., A. Higashiya, S. Kasai, S. Imada, A. Sekiyama, A. Yamasaki, M. Sing et al. „Resonant inelastic X-ray scattering of Sr2CuO3“. Journal of Electron Spectroscopy and Related Phenomena 144-147 (Juni 2005): 833–35. http://dx.doi.org/10.1016/j.elspec.2005.01.202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Simon, Marc, und Thorsten Schmitt. „Progress in resonant inelastic X-ray scattering“. Journal of Electron Spectroscopy and Related Phenomena 188 (Juni 2013): 1–2. http://dx.doi.org/10.1016/j.elspec.2013.07.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Moretti Sala, M., K. Martel, C. Henriquet, A. Al Zein, L. Simonelli, Ch J. Sahle, H. Gonzalez et al. „A high-energy-resolution resonant inelastic X-ray scattering spectrometer at ID20 of the European Synchrotron Radiation Facility“. Journal of Synchrotron Radiation 25, Nr. 2 (20.02.2018): 580–91. http://dx.doi.org/10.1107/s1600577518001200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
An end-station for resonant inelastic X-ray scattering and (resonant) X-ray emission spectroscopy at beamline ID20 of ESRF – The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high-energy-resolution applications, including partial fluorescence yield or high-energy-resolution fluorescence detected X-ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non-resonant inelastic X-ray scattering measurements of valence electron excitations.
15

KIM, Bumjoon. „Measuring Magnetic Excitation Spectra Using Resonant Inelastic X-ray Scattering“. Physics and High Technology 31, Nr. 9 (30.09.2022): 17–21. http://dx.doi.org/10.3938/phit.31.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The advent of modern synchrotron radiation facilities providing extremely intense x-rays has enabled measuring momentum-resolved spin excitation spectra of magnetic materials, which have long been exclusively accessible through inelastic neutron scattering. In this article, we briefly review the recent development of hard x-ray resonant inelastic x-ray scattering (RIXS) and discuss few examples of RIXS measurements on iridium oxides.
16

Shoji, Hironobu, Kenji Kobayashi, Toshiaki Iwazumi, Rintaro Katano, Yasuhito Isozumi, Shunji Kisnimoto und Susumu Nanao. „Resonant Inelastic X-Ray Scattering in Ni Componds“. Japanese Journal of Applied Physics 38, S1 (01.01.1999): 592. http://dx.doi.org/10.7567/jjaps.38s1.592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Tsutsui, K., H. Kondo, T. Tohyama und S. Maekawa. „Resonant inelastic X-ray scattering in copper oxides“. Physica C: Superconductivity 341-348 (November 2000): 205–6. http://dx.doi.org/10.1016/s0921-4534(00)00449-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hague, C. F., J. M. Mariot, L. Journel, J. J. Gallet, A. Rogalev, G. Krill und J. P. Kappler. „Resonant inelastic scattering at intermediate X-ray energies“. Journal of Electron Spectroscopy and Related Phenomena 110-111 (Oktober 2000): 179–87. http://dx.doi.org/10.1016/s0368-2048(00)00197-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

van den Brink, Jeroen, und Michel van Veenendaal. „Theory of indirect resonant inelastic X-ray scattering“. Journal of Physics and Chemistry of Solids 66, Nr. 12 (Dezember 2005): 2145–49. http://dx.doi.org/10.1016/j.jpcs.2005.10.168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Luo, Yi, Hans Ågren, Faris Gel’mukhanov, Jinghua Guo, Per Skytt, Nial Wassdahl und Joseph Nordgren. „Symmetry-selective resonant inelastic x-ray scattering ofC60“. Physical Review B 52, Nr. 20 (15.11.1995): 14479–96. http://dx.doi.org/10.1103/physrevb.52.14479.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Johnson, Peter D., und Yanjun Ma. „Band structure and x-ray resonant inelastic scattering“. Physical Review B 49, Nr. 7 (15.02.1994): 5024–27. http://dx.doi.org/10.1103/physrevb.49.5024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Nilsson, Anders, Takashi Tokushima, Yuka Horikawa, Yoshihisa Harada, Mathias P. Ljungberg, Shik Shin und Lars G. M. Pettersson. „Resonant inelastic X-ray scattering of liquid water“. Journal of Electron Spectroscopy and Related Phenomena 188 (Juni 2013): 84–100. http://dx.doi.org/10.1016/j.elspec.2012.09.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Niskanen, Johannes, Kuno Kooser, Jaakko Koskelo, Tanel Käämbre, Kristjan Kunnus, Annette Pietzsch, Wilson Quevedo et al. „Density functional simulation of resonant inelastic X-ray scattering experiments in liquids: acetonitrile“. Physical Chemistry Chemical Physics 18, Nr. 37 (2016): 26026–32. http://dx.doi.org/10.1039/c6cp03220f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Weinhardt, L., E. Ertan, M. Iannuzzi, M. Weigand, O. Fuchs, M. Bär, M. Blum et al. „Probing hydrogen bonding orbitals: resonant inelastic soft X-ray scattering of aqueous NH3“. Physical Chemistry Chemical Physics 17, Nr. 40 (2015): 27145–53. http://dx.doi.org/10.1039/c5cp04898b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ditter, Alexander S., William M. Holden, Samantha K. Cary, Veronika Mocko, Matthew J. Latimer, Erik J. Nelson, Stosh A. Kozimor und Gerald T. Seidler. „Resonant inelastic X-ray scattering using a miniature dispersive Rowland refocusing spectrometer“. Journal of Synchrotron Radiation 27, Nr. 2 (20.02.2020): 446–54. http://dx.doi.org/10.1107/s1600577520001022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
X-ray absorption spectroscopy (XAS) beamlines worldwide are steadily increasing their emphasis on full photon-in/photon-out spectroscopies, such as resonant inelastic X-ray scattering (RIXS), resonant X-ray emission spectroscopy (RXES) and high energy resolution fluorescence detection XAS (HERFD-XAS). In such cases, each beamline must match the choice of emission spectrometer to the scientific mission of its users. Previous work has recently reported a miniature tender X-ray spectrometer using a dispersive Rowland refocusing (DRR) geometry that functions with high energy resolution even with a large X-ray spot size on the sample [Holden et al. (2017). Rev. Sci. Instrum. 88, 073904]. This instrument has been used in the laboratory in multiple studies of non-resonant X-ray emission spectroscopy using a conventional X-ray tube, though only for preliminary measurements at a low-intensity microfocus synchrotron beamline. This paper reports an extensive study of the performance of a miniature DRR spectrometer at an unfocused wiggler beamline, where the incident monochromatic flux allows for resonant studies which are impossible in the laboratory. The results support the broader use of the present design and also suggest that the DRR method with an unfocused beam could have important applications for materials with low radiation damage thresholds and that would not survive analysis on focused beamlines.
26

Schülke, W., A. Kaprolat, Th Fischer, K. Höppner und F. Wohlert. „Spectrometer for high resolution resonant inelastic x‐ray scatteringa)“. Review of Scientific Instruments 66, Nr. 3 (März 1995): 2446–52. http://dx.doi.org/10.1063/1.1145642.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Gel’mukhanov, Faris, und Hans Ågren. „Resonant inelastic x-ray scattering with symmetry-selective excitation“. Physical Review A 49, Nr. 6 (01.06.1994): 4378–89. http://dx.doi.org/10.1103/physreva.49.4378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ament, Luuk J. P., Michel van Veenendaal, Thomas P. Devereaux, John P. Hill und Jeroen van den Brink. „Resonant inelastic x-ray scattering studies of elementary excitations“. Reviews of Modern Physics 83, Nr. 2 (24.06.2011): 705–67. http://dx.doi.org/10.1103/revmodphys.83.705.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yavaş, H., M. van Veenendaal, J. van den Brink, L. J. P. Ament, A. Alatas, B. M. Leu, M.-O. Apostu et al. „Observation of phonons with resonant inelastic x-ray scattering“. Journal of Physics: Condensed Matter 22, Nr. 48 (16.11.2010): 485601. http://dx.doi.org/10.1088/0953-8984/22/48/485601.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

van Veenendaal, Michel, und Paolo Carra. „Excitons and Resonant Inelastic X-Ray Scattering in Graphite“. Physical Review Letters 78, Nr. 14 (07.04.1997): 2839–42. http://dx.doi.org/10.1103/physrevlett.78.2839.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Gallet, J. J., J. M. Mariot, L. Journel, C. F. Hague, A. Rogalev, H. Ogasawara, A. Kotani und M. Sacchi. „Resonant inelastic x-ray scattering at theL3edge of samarium“. Physical Review B 60, Nr. 20 (15.11.1999): 14128–31. http://dx.doi.org/10.1103/physrevb.60.14128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Higashiya, A., A. Shigemoto, S. Kasai, S. Imada, S. Suga, M. Sing, C. Kim, M. Yabashi, K. Tamasaku und T. Ishikawa. „Resonant inelastic X-ray scattering (RIXS) of SrCuO 2“. Solid State Communications 130, Nr. 1-2 (April 2004): 7–11. http://dx.doi.org/10.1016/j.ssc.2004.01.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Nomura, Takuji, und Jun-ichi Igarashi. „Theory of resonant inelastic X-ray scattering in cuprates“. Journal of Physics and Chemistry of Solids 67, Nr. 1-3 (Januar 2006): 262–65. http://dx.doi.org/10.1016/j.jpcs.2005.10.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

DUDA, L. C., T. SCHMITT, J. NORDGREN, G. DHALENNE und A. REVCOLEVSCHI. „RESONANT INELASTIC SOFT X-RAY SCATTERING OF INSULATING CUPRATES“. Surface Review and Letters 09, Nr. 02 (April 2002): 1103–8. http://dx.doi.org/10.1142/s0218625x0200341x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We have performed high-resolution inelastic X-ray emission scattering experiments at the Cu 3p-, Cu 3s-, and O 1s-resonances of the insulating cuprates CuGeO 3, CuO, La 2 CuO 4, and SrCuO 2. We introduce the novel low-energy s-edge Cu-RIXS which reveals a dd-excitation peak, which was previously unobserved due to insufficient resolution and intensity in high-energy (Cu 1s RIXS). Also, O 1s-RIXS of all cuprate sample is investigated. Surprisingly, there is a large spread in the energy loss values of the RIXS features for different compounds and we explain this by assigning the larger energy features to the occurrence of a Zhang–Rice singlet while the lower energy feature (only observed for CuGeO 3) is assigned to a dd-excitation.
35

Lindle, D. W., R. Guillemint, S. Carniato, W. C. Stolte, L. Journel, R. Taïeb und M. Simon. „Linear dichroism in molecular resonant inelastic x-ray scattering“. Journal of Physics: Conference Series 194, Nr. 2 (01.11.2009): 022013. http://dx.doi.org/10.1088/1742-6596/194/2/022013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

de Groot, Frank M. F., Pieter Glatzel, Uwe Bergmann, Peter A. van Aken, Raul A. Barrea, Stephan Klemme, Michael Hävecker, Axel Knop-Gericke, Willem M. Heijboer und Bert M. Weckhuysen. „1s2p Resonant Inelastic X-ray Scattering of Iron Oxides“. Journal of Physical Chemistry B 109, Nr. 44 (November 2005): 20751–62. http://dx.doi.org/10.1021/jp054006s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Alp, E. E., W. Sturhahn und T. S. Toellner. „Lattice dynamics and inelastic nuclear resonant x-ray scattering“. Journal of Physics: Condensed Matter 13, Nr. 34 (09.08.2001): 7645–58. http://dx.doi.org/10.1088/0953-8984/13/34/311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Kim, Young-June, J. P. Hill, Jungho Kim und Diego Casa. „Hard X-ray Resonant Inelastic X-ray Scattering at the Advanced Photon Source“. Synchrotron Radiation News 25, Nr. 4 (30.07.2012): 3–8. http://dx.doi.org/10.1080/08940886.2012.700841.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

van Veenendaal, Michel, und Robert Benoist. „X-ray absorption and resonant inelastic x-ray scattering in the rare earths“. Physical Review B 58, Nr. 7 (15.08.1998): 3741–49. http://dx.doi.org/10.1103/physrevb.58.3741.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Wu, Jue, Yong Yang und Wanli Yang. „Advances in soft X-ray RIXS for studying redox reaction states in batteries“. Dalton Transactions 49, Nr. 39 (2020): 13519–27. http://dx.doi.org/10.1039/d0dt01782e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Sudayama, Takaaki, Kazuki Uehara, Takahiro Mukai, Daisuke Asakura, Xiang-Mei Shi, Akihisa Tsuchimoto, Benoit Mortemard de Boisse et al. „Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes“. Energy & Environmental Science 13, Nr. 5 (2020): 1492–500. http://dx.doi.org/10.1039/c9ee04197d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Glatzel, Pieter, Uwe Bergmann, Weiwei Gu, Hongxin Wang, Sergey Stepanov, Beaven S. Mandimutsira, Charles G. Riordan, Colin P. Horwitz, Terry Collins und Stephen P. Cramer. „Electronic Structure of Ni Complexes by X-ray Resonance Raman Spectroscopy (Resonant Inelastic X-ray Scattering)“. Journal of the American Chemical Society 124, Nr. 33 (August 2002): 9668–69. http://dx.doi.org/10.1021/ja026028n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Revelli, A., M. Moretti Sala, G. Monaco, P. Becker, L. Bohatý, M. Hermanns, T. C. Koethe et al. „Resonant inelastic x-ray incarnation of Young’s double-slit experiment“. Science Advances 5, Nr. 1 (Januar 2019): eaav4020. http://dx.doi.org/10.1126/sciadv.aav4020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Young’s archetypal double-slit experiment forms the basis for modern diffraction techniques: The elastic scattering of waves yields an interference pattern that captures the real-space structure. Here, we report on an inelastic incarnation of Young’s experiment and demonstrate that resonant inelastic x-ray scattering (RIXS) measures interference patterns, which reveal the symmetry and character of electronic excited states in the same way as elastic scattering does for the ground state. A prototypical example is provided by the quasi-molecular electronic structure of insulating Ba3CeIr2O9with structural Ir dimers and strong spin-orbit coupling. The double “slits” in this resonant experiment are the highly localized core levels of the two Ir atoms within a dimer. The clear double-slit-type sinusoidal interference patterns that we observe allow us to characterize the electronic excitations, demonstrating the power of RIXS interferometry to unravel the electronic structure of solids containing, e.g., dimers, trimers, ladders, or other superstructures.
44

Biasin, Elisa, Daniel R. Nascimento, Benjamin I. Poulter, Baxter Abraham, Kristjan Kunnus, Angel T. Garcia-Esparza, Stanislaw H. Nowak et al. „Revealing the bonding of solvated Ru complexes with valence-to-core resonant inelastic X-ray scattering“. Chemical Science 12, Nr. 10 (2021): 3713–25. http://dx.doi.org/10.1039/d0sc06227h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Wang, Ru-Pan, Hebatalla Elnaggar, Charles J. Titus, Keisuke Tomiyasu, Jaap Geessinck, Gertjan Koster, Federica Frati, Jun Okamoto, Di-Jing Huang und Frank M. F. de Groot. „Saturation and self-absorption effects in the angle-dependent 2p3d resonant inelastic X-ray scattering spectra of Co3+“. Journal of Synchrotron Radiation 27, Nr. 4 (09.06.2020): 979–87. http://dx.doi.org/10.1107/s1600577520005123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Angle-dependent 2p3d resonant inelastic X-ray scattering spectra of a LaCoO3 single crystal and a 55 nm LaCoO3 film on a SrTiO3 substrate are presented. Theoretical calculation shows that, with ∼20 meV resolved Co 2p3d resonant inelastic X-ray scattering (RIXS), the excited states of the isotropic 1A1g (O h ) ground state are split by 3d spin–orbit coupling, which can be distinguished via their angular dependence. However, strong self-absorption and saturation effects distort the spectra of the LaCoO3 single crystal and limit the observation of small angular dependence. In contrast, the RIXS on 55 nm LaCoO3 shows less self-absorption effects and preserves the angular dependence of the excited states.
46

Vaz da Cruz, Vinícius, Emelie Ertan, Rafael C. Couto, Sebastian Eckert, Mattis Fondell, Marcus Dantz, Brian Kennedy et al. „A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering“. Physical Chemistry Chemical Physics 19, Nr. 30 (2017): 19573–89. http://dx.doi.org/10.1039/c7cp01215b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Lipiec, Ewelina, Joanna Czapla, Jakub Szlachetko, Yves Kayser, Wojciech Kwiatek, Bayden Wood, Glen B. Deacon und Jacinto Sá. „Novel in situ methodology to observe the interactions of chemotherapeutical Pt drugs with DNA under physiological conditions“. Dalton Trans. 43, Nr. 37 (2014): 13839–44. http://dx.doi.org/10.1039/c4dt00861h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ablett, J. M., D. Prieur, D. Céolin, B. Lassalle-Kaiser, B. Lebert, M. Sauvage, Th Moreno et al. „The GALAXIES inelastic hard X-ray scattering end-station at Synchrotron SOLEIL“. Journal of Synchrotron Radiation 26, Nr. 1 (01.01.2019): 263–71. http://dx.doi.org/10.1107/s160057751801559x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
GALAXIES is an in-vacuum undulator hard X-ray micro-focused beamline dedicated to the study of the electronic structure of materials with high energy resolution using both photoelectron spectroscopy and inelastic X-ray scattering and under both non-resonant (NR-IXS) and resonant (RIXS) conditions. Due to the penetrating power of hard X-rays and the `photon-in/photon-out' technique, the sample environment is not a limitation. Materials under extreme conditions, for example in diamond anvil cells or catalysis chambers, thus constitute a major research direction. Here, the design and performance of the inelastic X-ray scattering end-station that operates in the energy range from ∼4 keV up to 12 keV is reported, and its capabilities are highlighted using a selection of data taken from recently performed experiments. The ability to scan `on the fly' the incident and scattered/emitted X-ray energies, and the sample position enables fast data collection and high experimental throughput. A diamond X-ray transmission phase retarder, which can be used to generate circularly polarized light, will also be discussed in the light of the recent RIXS–MCD approach.
49

Vaz da Cruz, Vinícius, Nina Ignatova, Rafael C. Couto, Daniil A. Fedotov, Dirk R. Rehn, Viktoriia Savchenko, Patrick Norman et al. „Nuclear dynamics in resonant inelastic X-ray scattering and X-ray absorption of methanol“. Journal of Chemical Physics 150, Nr. 23 (21.06.2019): 234301. http://dx.doi.org/10.1063/1.5092174.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Glatzel, Pieter. „MHz pump and probe combined with XAS-XES“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C127. http://dx.doi.org/10.1107/s2053273314098726.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We implemented a MHz pump and probe scheme on beamline ID26 of the European Synchrotron Radiation Facility. The laser runs at 1.4 MHz in the ESRF 16b mode and thus pumps every fourth pulse with ca. 15 uJ per pulse and 350 fs pulse length. The beamline hosts an X-ray emission spectrometer and thus allows combining resonant inelastic X-ray scattering with a MHz pump and probe schemes. The scattered X-rays are recorded with an avalanche photodiode in single photon counting mode. We measured the transient spectra of the spin cross-over transition in [Fe(bpy)3]Cl2 of the non-resonant Ka lines and of 1s2p resonant inelastic X-ray scattering (RIXS) at the K absorption pre-edge of Fe. The Ka transient spectrum can be readily modeled using crystal field multiplet calculations because the spectra mainly depend on the Fe spin state. The 1s2p RIXS is richer in information because it also probes the unoccupied molecular orbitals and a theoretical interpretation is more challenging.

Zur Bibliographie