Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Resonance Audio“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Resonance Audio" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Resonance Audio"
Ziarati, Mokhtar. „Magnetic resonance imaging compatible audio headset“. Journal of the Acoustical Society of America 102, Nr. 4 (Oktober 1997): 1924. http://dx.doi.org/10.1121/1.419706.
Der volle Inhalt der QuelleKohmoto, Osamu. „Ferromagnetic Resonance in Metal Audio Tapes“. Japanese Journal of Applied Physics 33, Part 1, No. 12A (15.12.1994): 6542–45. http://dx.doi.org/10.1143/jjap.33.6542.
Der volle Inhalt der QuelleKohmoto, Osamu, und Chester Alexander. „Ferromagnetic resonance in metal-evaporated audio tapes“. Journal of Magnetism and Magnetic Materials 116, Nr. 3 (Oktober 1992): 405–10. http://dx.doi.org/10.1016/0304-8853(92)90122-5.
Der volle Inhalt der QuelleTodt, I., P. Mittmann, A. Ernst, S. Mutze und G. Rademacher. „In vivoexperiences with magnetic resonance imaging scans in Vibrant Soundbridge type 503 implantees“. Journal of Laryngology & Otology 132, Nr. 5 (23.04.2018): 401–3. http://dx.doi.org/10.1017/s0022215118000518.
Der volle Inhalt der QuelleVanLue, Michael. „Cleft Palate Speech and Resonance: An Audio and Video Resource“. Plastic & Reconstructive Surgery 147, Nr. 4 (19.03.2021): 1029–30. http://dx.doi.org/10.1097/prs.0000000000007804.
Der volle Inhalt der QuelleAkay, Cengiz, und Aytaç Yalçiner. „A New Weak Field Double Resonance NMR Spectrometer“. Zeitschrift für Naturforschung A 50, Nr. 2-3 (01.03.1995): 177–85. http://dx.doi.org/10.1515/zna-1995-2-309.
Der volle Inhalt der QuelleABE, Tamotsu. „Audio equipment. Three conditions of high stiffness, non resonance, and lightweight.“ Journal of the Japan Society for Composite Materials 15, Nr. 2 (1989): 60–63. http://dx.doi.org/10.6089/jscm.15.60.
Der volle Inhalt der QuelleRu, Xue-min, Yue-ting Zhuang und Fei Wu. „Audio steganalysis based on “negative resonance phenomenon” caused by steganographic tools“. Journal of Zhejiang University-SCIENCE A 7, Nr. 4 (14.03.2006): 577–83. http://dx.doi.org/10.1631/jzus.2006.a0577.
Der volle Inhalt der QuellePeng, Chao, HaiXin Sun und En Cheng. „Detection of Weak Audio Signal in Ocean Based on Stochastic Resonance“. Open Automation and Control Systems Journal 7, Nr. 1 (14.09.2015): 1185–90. http://dx.doi.org/10.2174/1874444301507011185.
Der volle Inhalt der QuelleYu, Bin, Jun Hu, Mathias Funk, Rong-Hao Liang, Mengru Xue und Loe Feijs. „RESonance: Lightweight, Room-Scale Audio-Visual Biofeedback for Immersive Relaxation Training“. IEEE Access 6 (2018): 38336–47. http://dx.doi.org/10.1109/access.2018.2853406.
Der volle Inhalt der QuelleDissertationen zum Thema "Resonance Audio"
Calvert, Gemma A. „Functional magnetic resonance imaging studies of lip-reading and audio-visual speech perception“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390509.
Der volle Inhalt der QuelleWidman, Ludvig. „Binaural versus Stereo Audio in Navigation in a 3D Game: Differences in Perception and Localization of Sound“. Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85512.
Der volle Inhalt der QuelleSmith, Michael Sterling. „Strategies for the Creation of Spatial Audio in Electroacoustic Music“. Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404593/.
Der volle Inhalt der QuelleSellrup, Jens, und Daniel Wilson. „Tonfrekvensspårledning : S-förbindningens funktion och dimensionering av alternativa material i förbindningen“. Thesis, KTH, Data- och elektroteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168996.
Der volle Inhalt der QuelleTrack circuits are used to detect where the trains are along the railway. This report contains a study of two models of audio frequency track circuit from Alstom called DTC – 921 and DTC - 24. The calculations made in the result section are made on only DTC-921. The different frequencies between two track circuits are divided by an S-bond. The S-bond is made of cupper which is a material that is theft-prone. The purpose of the project was to investigate the functionality of the S-bond and how a cable with a different kind of material would affect the function. Three different kinds of materials have been investigated: aluminum, iron and safecable from safetrack. By studying the function of the S-bond and how it interacts with the tuning box the affect off the different materials have been evaluated. The parameters of the materials have been calculated and the function has been simulated in Pspice.
Palomar, García María Ángeles. „Modificaciones de las interacciones audio-motoras asociadas con la formación musical y el aprendizaje de un vocabulario nuevo“. Doctoral thesis, Universitat Jaume I, 2017. http://hdl.handle.net/10803/401545.
Der volle Inhalt der QuelleThe aim of the present thesis was to investigate neural changes associated with audiomotor stimulation. We measured brain activation as well as functional connectivity between brain regions implicated in audiomotor processing. Three studies were conducted to investigate the neural changes in audiomotor connectivity. The first study investigated the learning processes required to play a musical instrument, whereas the second and third investigated the acquisition of a new vocabulary. My thesis demonstrated that both musical training and learning a new vocabulary leaves an imprint in the brain that affects the audiomotor interactions, even in the absence of a specific task. Furthermore, my thesis showed that the acquisition of a new vocabulary not only produces short-term effects in the brain but even extends to long- term effects over a few weeks and, in addition, modifies the native language. Overall, my thesis provided insight in the ongoing neural changes during language and musical training.
Bücher zum Thema "Resonance Audio"
Resonance in singing: Voice building through acoustic feedback. Princeton, NJ: Inside View Press, 2008.
Den vollen Inhalt der Quelle findenMiller, Donald Gray. Resonance in singing: Voice building through acoustic feedback. Princeton, NJ: Inside View Press, 2008.
Den vollen Inhalt der Quelle findenMiller, Donald Gray. Resonance in singing: Voice building through acoustic feedback. Princeton, NJ: Inside View Press, 2008.
Den vollen Inhalt der Quelle findenMiller, Donald Gray. Resonance in singing: Voice building through acoustic feedback. Princeton, NJ: Inside View Press, 2008.
Den vollen Inhalt der Quelle findenMiller, Donald Gray. Resonance in singing: Voice building through acoustic feedback. Princeton, NJ: Inside View Press, 2008.
Den vollen Inhalt der Quelle findenSzabo, J. P. A forced vibration non-resonant method for the determination of complex modulus in the audio frequency range. Dartmouth, N.S: Defence Research Establishment Atlantic, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Resonance Audio"
De Luca, F., B. C. De Simone, P. Fattibene, N. Lugeri und B. Maraviglia. „Imaging of Solids by Audio Frequency Excitation in the Rotating Frame“. In 25th Congress Ampere on Magnetic Resonance and Related Phenomena, 100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_48.
Der volle Inhalt der QuellePierrus, J. „Ohm’s law and electric circuits“. In Solved Problems in Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821915.003.0006.
Der volle Inhalt der QuelleDavison, Claire. „European Peace in Pieces?“ In Virginia Woolf, Europe, and Peace, 17–32. Liverpool University Press, 2020. http://dx.doi.org/10.3828/liverpool/9781949979350.003.0002.
Der volle Inhalt der QuelleMarks II, Robert J. „Introduction“. In Handbook of Fourier Analysis & Its Applications. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780195335927.003.0006.
Der volle Inhalt der QuelleKillian, Karsten. „Acoustics as Resonant Element of Multi-sensory Brand Communication“. In Audio Branding, 148–63. Nomos, 2009. http://dx.doi.org/10.5771/9783845216935-148.
Der volle Inhalt der QuelleKerner, Aaron Michael, und Jonathan L. Knapp. „Hearing: With a Touch of Sound—The Affective Charge of Audio Design“. In Extreme Cinema. Edinburgh University Press, 2016. http://dx.doi.org/10.3366/edinburgh/9781474402903.003.0002.
Der volle Inhalt der QuelleWinning, Ross. „Sound Image and Resonant Animated Space“. In Advances in Media, Entertainment, and the Arts, 83–109. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8205-4.ch006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Resonance Audio"
Sun, Shui-fa, Ming Jiang, Xin-qiong Liu, Jun-li Wan und Sheng Zheng. „A blind audio watermarking based on stochastic resonance signal processor“. In 2008 9th International Conference on Signal Processing (ICSP 2008). IEEE, 2008. http://dx.doi.org/10.1109/icosp.2008.4697581.
Der volle Inhalt der QuelleZhang, Li, und Di He. „A novel robust audio watermark algorithm based on stochastic resonance“. In Electronics (PrimeAsia). IEEE, 2009. http://dx.doi.org/10.1109/primeasia.2009.5397415.
Der volle Inhalt der QuelleKrishna, Onkar, Rajib Kumar Jha, P. K. Biswas und M. M. Mushrif. „Dynamic stochastic resonance-based improved watermark extraction from audio signal“. In 2012 National Conference on Communications (NCC). IEEE, 2012. http://dx.doi.org/10.1109/ncc.2012.6176799.
Der volle Inhalt der QuelleVakula, Arthur S., und Sergey Yu Polevoy. „Technique for electron spin resonance registration based on audio card synchrodetector“. In 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). IEEE, 2013. http://dx.doi.org/10.1109/msmw.2013.6622193.
Der volle Inhalt der QuelleArmitage, Jack. „An experimental audio-tactile interface for sculpting digital resonance models using modelling clay“. In
Tan, Chin-Tuan, Benjamin Guo und Ivan Selesnick. „Resonance-based decomposition for the manipulation of acoustic cues in speech: An assessment of perceived quality“. In 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2011. http://dx.doi.org/10.1109/aspaa.2011.6082329.
Der volle Inhalt der QuelleYebin Wang und Heming Zhao. „Vocal tract resonances tracking by auxiliary particle filters“. In 2008 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2008. http://dx.doi.org/10.1109/icalip.2008.4590124.
Der volle Inhalt der QuelleT.G., Subhash Joshi, und Vinod John. „Small signal audio susceptibility model for Series Resonant Converter“. In 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2016. http://dx.doi.org/10.1109/pedes.2016.7914463.
Der volle Inhalt der QuelleBonanos, E., M. Connolly, M. Harbinson, L. Dixon, P. Horan, K. Lyons und N. Johnston. „5 Audit of stress cardiac magnetic resonance referrals in northern ireland“. In Irish Cardiac Society Annual Scientific Meeting & AGM, Thursday October 17th – Saturday October 19th 2019, Galway, Ireland. BMJ Publishing Group Ltd and British Cardiovascular Society, 2019. http://dx.doi.org/10.1136/heartjnl-2019-ics.5.
Der volle Inhalt der QuelleObando, Pablo Vasquez, und Bengt Mandersson. „Frequency tracking of resonant-like sounds from audio recordings of arterio-venous fistula stenosis“. In 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW). IEEE, 2012. http://dx.doi.org/10.1109/bibmw.2012.6470237.
Der volle Inhalt der Quelle