Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Resistance QTL“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Resistance QTL" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Resistance QTL"
Drake-Stowe, Katherine, Nicolas Bakaher, Simon Goepfert, Berangere Philippon, Regis Mark, Paul Peterson und Ramsey S. Lewis. „Multiple Disease Resistance Loci Affect Soilborne Disease Resistance in Tobacco (Nicotiana tabacum)“. Phytopathology® 107, Nr. 9 (September 2017): 1055–61. http://dx.doi.org/10.1094/phyto-03-17-0118-r.
Der volle Inhalt der QuelleMiedaner, Thomas, und Viktor Korzun. „Marker-Assisted Selection for Disease Resistance in Wheat and Barley Breeding“. Phytopathology® 102, Nr. 6 (Juni 2012): 560–66. http://dx.doi.org/10.1094/phyto-05-11-0157.
Der volle Inhalt der QuelleZwonitzer, John C., Nathan D. Coles, Matthew D. Krakowsky, Consuelo Arellano, James B. Holland, Michael D. McMullen, Richard C. Pratt und Peter J. Balint-Kurti. „Mapping Resistance Quantitative Trait Loci for Three Foliar Diseases in a Maize Recombinant Inbred Line Population—Evidence for Multiple Disease Resistance?“ Phytopathology® 100, Nr. 1 (Januar 2010): 72–79. http://dx.doi.org/10.1094/phyto-100-1-0072.
Der volle Inhalt der QuelleLana, Ubiraci Gomes de Paula, Isabel Regina Prazeres de Souza, Roberto Willians Noda, Maria Marta Pastina, Jurandir Vieira Magalhaes und Claudia Teixeira Guimaraes. „Quantitative Trait Loci and Resistance Gene Analogs Associated with Maize White Spot Resistance“. Plant Disease 101, Nr. 1 (Januar 2017): 200–208. http://dx.doi.org/10.1094/pdis-06-16-0899-re.
Der volle Inhalt der QuelleSoriano, Jose Miguel, und Conxita Royo. „Dissecting the Genetic Architecture of Leaf Rust Resistance in Wheat by QTL Meta-Analysis“. Phytopathology® 105, Nr. 12 (Dezember 2015): 1585–93. http://dx.doi.org/10.1094/phyto-05-15-0130-r.
Der volle Inhalt der QuelleAbdelmajid, Kassem My, Laura Ramos, Leonor Leandro, Gladys Mbofung, David L. Hyten, Stella K. Kantartzi, Robert L. Grier IV, Victor N. Njiti, Silvia Cianzio und Khalid Meksem. „The ‘PI 438489B’ by ‘Hamilton’ SNP-Based Genetic Linkage Map of Soybean [Glycine max (L.) Merr.] Identified Quantitative Trait Loci that Underlie Seedling SDS Resistance“. Plant Genetics, Genomics, and Biotechnology 1, Nr. 1 (15.06.2017): 18–30. http://dx.doi.org/10.5147/pggb.v1i1.148.
Der volle Inhalt der QuelleHackenberg, Dieter, Elvis Asare-Bediako, Adam Baker, Peter Walley, Carol Jenner, Shannon Greer, Lawrence Bramham et al. „Identification and QTL mapping of resistance to Turnip yellows virus (TuYV) in oilseed rape, Brassica napus“. Theoretical and Applied Genetics 133, Nr. 2 (05.11.2019): 383–93. http://dx.doi.org/10.1007/s00122-019-03469-z.
Der volle Inhalt der QuelleEsvelt Klos, K., T. Gordon, P. Bregitzer, P. Hayes, X. M. Chen, I. A. del Blanco, S. Fisk und J. M. Bonman. „Barley Stripe Rust Resistance QTL: Development and Validation of SNP Markers for Resistance to Puccinia striiformis f. sp. hordei“. Phytopathology® 106, Nr. 11 (November 2016): 1344–51. http://dx.doi.org/10.1094/phyto-09-15-0225-r.
Der volle Inhalt der QuelleOdilbekov, He, Armoniené, Saripella, Henriksson, Singh und Chawade. „QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat“. Agronomy 9, Nr. 9 (04.09.2019): 510. http://dx.doi.org/10.3390/agronomy9090510.
Der volle Inhalt der QuelleChunthawodtiporn, Jareerat, Theresa Hill, Kevin Stoffel und Allen Van Deynze. „Genetic Analysis of Resistance to Multiple Isolates of Phytophthora capsici and Linkage to Horticultural Traits in Bell Pepper“. HortScience 54, Nr. 7 (Juli 2019): 1143–48. http://dx.doi.org/10.21273/hortsci13359-18.
Der volle Inhalt der QuelleDissertationen zum Thema "Resistance QTL"
Sabry, Ahmed Mohamed-Bashir. „QTL mapping of resistance to sorghum downy mildew in maize“. Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/460.
Der volle Inhalt der QuelleGambone, Katherine. „Mapping stem rust resistance genes in ‘Kingbird’“. Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32496.
Der volle Inhalt der QuelleDepartment of Plant Pathology
William Bockus
Robert Bowden
Stem rust, caused by the fungus Puccinia graminis f. sp. tritici, has historically been one of the most important diseases of wheat. Although losses have been much reduced in the last fifty years, new highly virulent races of the pathogen have recently emerged in East Africa. These new races are virulent on nearly all of the currently deployed resistance genes and therefore pose a serious threat to global wheat production. The spring wheat variety ‘Kingbird’ is thought to contain multiple quantitative trait loci (QTLs) that provide durable, adult-plant resistance against wheat stem rust. Stem rust-susceptible Kansas winter wheat line ‘KS05HW14’ was backcrossed to Kingbird and 379 recombinant lines were advanced to BC₁F₅ and then increased for testing. The lines were screened for stem rust resistance in the greenhouse and field in Kansas and in the field in Kenya over multiple years. We identified 16,237 single nucleotide polymorphisms (SNPs) with the Wheat 90K iSelect SNP Chip assay. After filtering for marker quality, linkage maps were constructed for each wheat chromosome. Composite interval mapping and multiple-QTL mapping identified seven QTLs on chromosome arms 2BL, 2DS, 3BS, 3BSc, 5DL, 7BL, and 7DS. Six QTLs were inherited from Kingbird and one QTL on 7BL was inherited from KS05HW14. The location of the QTL on 2BL is approximately at locus Sr9, 3BS is at Sr2, 3BSc is at Sr12, and 7DS is at Lr34/Yr18/Sr57. Although no QTL was found on 1BL, the presence of resistance gene Lr46/Yr29/Sr58 on 1BL in both parents was indicated by the gene-specific marker csLV46. QTLs on 2DS and 5DL may be related to photoperiod or vernalization genes. Pairwise interactions were only observed with race QFCSC, most notably occurring with QTLs 2BL and 3BSc. These results confirm that there are multiple QTLs present in Kingbird. Ultimately, the identification of the QTLs that make Kingbird resistant will aid in the understanding of durable, non-race-specific resistance to stem rust of wheat.
Cai, Jin. „Mapping QTL for fusarium head blight resistance in Chinese wheat landraces“. Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/13703.
Der volle Inhalt der QuelleDepartment of Agronomy
Allan Fritz
Fusarium head blight (FHB) is one of the most devastative diseases in wheat. Growing resistant cultivars is one of the most effective strategies to minimize the disease damage. Huangcandou (HCD) is a Chinese wheat landrace showing a high level of resistance to FHB spread within a spike (type II). To identify quantitative traits loci (QTL) for resistance in HCD, a population of 190 recombinant inbred lines (RILs) were developed from a cross between HCD and Jagger, a susceptible hard winter wheat (HWW) released in Kansas. The population was evaluated for type II resistance at the greenhouses of Kansas State University. After initial marker screening, 261 polymorphic simple-sequence repeats (SSR) between parents were used for analysis of the RIL population. Among three QTL identified, two from HCD were mapped on the short arms of chromosomes 3B (3BS) and 3A (3AS). The QTL on the distal end of 3BS showed a major effect on type II resistance in all three experiments. This QTL coincides with a previously reported Fhb1, and explained 28.3% of phenotypic variation. The QTL on 3AS explained 9.7% of phenotypic variation for mean PSS over three experiments. The third QTL from chromosome 2D of Jagger explained 6.5% of phenotypic variation. Allelic substitution using the closest marker to each QTL revealed that substitution of Jagger alleles of two QTL on 3AS and 3BS with those from HCD significantly reduced the PSS. HCD containing both QTL on 3AS and 3BS with a large effect on type II resistance can be an alternative source of FHB resistance for improving FHB type II resistance in wheat. Besides, meta-analyses were used to estimate 95% confidence intervals (CIs) of 24 mapped QTL in five previously mapped populations derived from Chinese landraces: Wangshuibai (WSB), Haiyanzhong (HYZ), Huangfangzhu (HFZ), Baishanyuehuang (BSYH) and Huangcandou (HCD). Nineteen QTL for FHB type II resistance were projected to 10 QTL clusters. Five QTL on chromosomes 1A, 5A, 7A, and 3BS (2) were identified as confirmed QTL that have stable and consistent effects on FHB resistance and markers in these meta-QTL regions should be useful for marker-assisted breeding.
Fytrou, Anastasia. „Drosophila immunity : QTL mapping, genetic variation and molecular evolution“. Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4742.
Der volle Inhalt der QuelleWright, Emily Elizabeth. „Identification of Native FHB Resistance QTL in the SRW Wheat Cultivar Jamestown“. Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/64327.
Der volle Inhalt der QuelleMaster of Science
Asea, Godfrey Rox. „Genetic characterization of partial resistance and comparative strategies for improvement of host-resistance to multiple foliar pathogens of maize“. Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1133833939.
Der volle Inhalt der QuelleLee, Jonghoon, Nur K. Izzah, Murukarthick Jayakodi, Sampath Perumal, Ho J. Joh, Hyeon J. Lee, Sang-Choon Lee et al. „Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage“. BioMed Central Ltd, 2015. http://hdl.handle.net/10150/610296.
Der volle Inhalt der QuelleSingh, Gurminder. „Resistance Screening and QTL Mapping in Wheat and Triticale Against Root-Lesion Nematode“. Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/31886.
Der volle Inhalt der QuellePirseyedi, Seyed Mostafa. „QTL Analysis for Fusarium Head Blight Resistance in Tunisian-Derived Durum Wheat Populations“. Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27014.
Der volle Inhalt der QuelleWang, Hehe. „Identification and Dissection of Soybean QTL Conferring Resistance to Phytophthora sojae“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1321389470.
Der volle Inhalt der QuelleBuchteile zum Thema "Resistance QTL"
Sun, Jingxian, Duo Lv, Yue Chen, Jian Pan, Run Cai und Junsong Pan. „QTL Mapping for Disease Resistance in Cucumber“. In Compendium of Plant Genomes, 81–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88647-9_7.
Der volle Inhalt der QuelleZheng, Chunfang, Khalid Y. Rashid, Sylvie Cloutier und Frank M. You. „QTL and Candidate Genes for Flax Disease Resistance“. In The Flax Genome, 121–48. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-16061-5_7.
Der volle Inhalt der QuelleTaleei, A., H. Kanouni und M. Baum. „QTL Analysis of Ascochyta Blight Resistance in Chickpea“. In Communications in Computer and Information Science, 25–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10236-3_3.
Der volle Inhalt der Quelleda Silva Pereira, Guilherme, Carla Cristina da Silva, João Ricardo Bachega Feijó Rosa, Olusegun Olusesan Sobowale, Gabriel de Siqueira Gesteira, Marcelo Mollinari und Zhao-Bang Zeng. „New Analytical Tools for Molecular Mapping of Quantitative Trait Loci in Sweetpotato“. In Compendium of Plant Genomes, 69–84. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-65003-1_6.
Der volle Inhalt der QuelleLi, Chengdao, Sanjiv Gupta, Xiao-Qi Zhang, Sharon Westcott, Jian Yang, Robert Park, Greg Platz, Robert Loughman und Reg Lance. „A Major QTL Controlling Adult Plant Resistance for Barley Leaf Rust“. In Advance in Barley Sciences, 285–300. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4682-4_24.
Der volle Inhalt der QuelleShahzadi, Asifa, Samra Farooq, Ali Razzaq, Fozia Saleem, Gelyn D. Sapin, Shabir Hussain Wani und Vincent Pamugas Reyes. „Advancement in QTL Mapping to Develop Resistance Against European Corn Borer (ECB) in Maize“. In Maize Improvement, 25–40. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21640-4_2.
Der volle Inhalt der QuelleCurley, J., S. C. Sim, G. Jung, S. Leong, S. Warnke und R. E. Barker. „QTL Mapping of Gray Leaf Spot Resistance in Ryegrass, and Synteny-based Comparison with Rice Blast Resistance Genes in Rice“. In Developments in Plant Breeding, 37–46. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2591-2_3.
Der volle Inhalt der QuelleYang, Jian, Chengdao Li, Xue Gong, Sanjiv Gupta, Reg Lance, Guoping Zhang, Rob Loughman und Jun Zhu. „Large Population with Low Marker Density Verse Small Population with High Marker Density for QTL Mapping: A Case Study for Mapping QTL Controlling Barley Net Blotch Resistance“. In Advance in Barley Sciences, 301–15. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4682-4_25.
Der volle Inhalt der QuelleHouston, R. D., A. Gheyas, A. Hamilton, D. R. Guy, A. E. Tinch, J. B. Taggart, B. J. McAndrew, C. S. Haley und S. C. Bishop. „Detection and Confirmation of a Major QTL Affecting Resistance to Infectious Pancreatic Necrosis (IPN) in Atlantic Salmon (Salmo Salar)“. In Animal Genomics for Animal Health, 199–204. Basel: KARGER, 2008. http://dx.doi.org/10.1159/000317160.
Der volle Inhalt der QuelleToffolatti, Silvia Laura, Marisol Prandato, Luca Serrati, Helge Sierotzki, Ulrich Gisi und Annamaria Vercesi. „Evolution of Qol resistance in Plasmopara viticola oospores“. In The Downy Mildews - Biology, Mechanisms of Resistance and Population Ecology, 199–206. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-1281-2_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Resistance QTL"
Mukiibi, R., D. Robledo, C. Peñaloza, S. Ferraresso, R. Franch, D. Bertotto, M. Freguglia et al. „573. A major QTL affects resistance to viral nervous necrosis in farmed European seabass“. In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_573.
Der volle Inhalt der QuelleCalboli, F. C. F., H. Koskinen, A. Nousianen, C. Fraslin, R. D. Houston und A. Kause. „565. Conserved QTL and chromosomal inversions affect resistance to columnaris disease in two rainbow trout populations“. In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_565.
Der volle Inhalt der QuelleMirskaya, G. V., E. V. Kanash, N. V. Kocherina, N. A. Rushina, D. V. Rusakov und Yu V. Chesnokov. „QTL MAPPING THAT DETERMINE TRAITS OF GRAIN PRODUCTIVITY IN SOFT SPRING WHEAT (TRITICUM AESTIVUM L.) UNDER DIFFERENT LEVELS OF NITROGEN NUTRITION“. In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-527-530.
Der volle Inhalt der Quelle„Exploring wheat genotype influence on microbiome-mediated take-all disease suppression“. In Plant Health 2024. American Phytopathological Society, 2024. http://dx.doi.org/10.1094/aps-ph24-027.
Der volle Inhalt der QuelleAmromin, Eduard, Svetlana Kovinskaya, Marina Mizina und Igor Mizine. „Quasi-Linear Theory of Ship Wave Resistance and CFD Analysis of Ship’s Environmental Impact“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45440.
Der volle Inhalt der QuelleMcCoy, Terry H., und Jeffrey Thomas. „SSC Resistance of QT-900 and QT-1000 Coiled Tubing“. In SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/99557-ms.
Der volle Inhalt der QuelleSantos, Jessika Teodoro, Naiany Pereira Silva, Rizia Rocha Silva, Vitor Alves Marques, Rafael Ribeiro Alves, Nathan Muci Aguiar Damasio und Carlos Alexandre Vieira. „Evaluation of quality of life of women breast cancer survivors who received resistance training for 12 months“. In Brazilian Breast Cancer Symposium 2024, 83. Mastology, 2024. http://dx.doi.org/10.29289/259453942024v34s1083.
Der volle Inhalt der QuelleMcCoy, Terry H. „SSC Resistance of QT-900 Coiled Tubing“. In SPE/ICoTA Coiled Tubing Conference and Exhibition. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93786-ms.
Der volle Inhalt der QuelleTaleei, Alireza, Homayoun Kanouni, Michael Baum, Seyed Ali Peyghambari, Seyed Mahmood Okhovat und Mathew Abang. „Identification and Mapping of QTLs for Resistance to Ascochyta Blight (Pathotype III) in Chickpea“. In 2008 Second International Conference on Future Generation Communication and Networking (FGCN). IEEE, 2008. http://dx.doi.org/10.1109/fgcn.2008.184.
Der volle Inhalt der QuelleOkada, Masato, Shin Terada, Yuki Kataoka, Takeshi Kihara, Takuya Miura und Masaaki Otsu. „Burnishing Characteristics of Sliding Burnishing Process With Active Rotary Tool Targeting Stainless Steel“. In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8515.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Resistance QTL"
Santa S, Juan David, Jhon Alexander Berdugo C., Teresa Mosquera V., Nubia Liliana Cely, Mauricio Soto S. und Carlos H. Galeano M. QTL analysis for late blight resistance in an Andean Tetraploid potato population. Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, 2016. http://dx.doi.org/10.21930/agrosavia.poster.2016.49.
Der volle Inhalt der QuelleWisniewski, Michael E., Samir Droby, John L. Norelli, Noa Sela und Elena Levin. Genetic and transcriptomic analysis of postharvest decay resistance in Malus sieversii and the characterization of pathogenicity effectors in Penicillium expansum. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7600013.bard.
Der volle Inhalt der QuelleLevin, Ilan, John Thomas, Moshe Lapidot, Desmond McGrath und Denis Persley. Resistance to Tomato yellow leaf curl virus (TYLCV) in tomato: molecular mapping and introgression of resistance to Australian genotypes. United States Department of Agriculture, Oktober 2010. http://dx.doi.org/10.32747/2010.7613888.bard.
Der volle Inhalt der QuelleSimon, James, und Yigal Cohen. Basil gene pool enrichment for Downy Mildew resistance and QTL development using genotyping by sequencing. United States Department of Agriculture, Januar 2016. http://dx.doi.org/10.32747/2016.7604273.bard.
Der volle Inhalt der QuelleSanta Sepúlveda, Juan David, Jhon Berdugo Cely, Mauricio Soto Suárez, Teresa Mosquera und Carlos Galeano. A genetic linkage map of tetraploid potato (Solanum tuberosum L.) for Phytophthora infestans and Tecia solanivora quantitative resistance. Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, 2016. http://dx.doi.org/10.21930/agrosavia.poster.2016.28.
Der volle Inhalt der QuelleDavid, Lior, Yaniv Palti, Moshe Kotler, Gideon Hulata und Eric M. Hallerman. Genetic Basis of Cyprinid Herpes Virus-3 Resistance in Common Carp. United States Department of Agriculture, Januar 2011. http://dx.doi.org/10.32747/2011.7592645.bard.
Der volle Inhalt der QuelleDubcovsky, Jorge, Tzion Fahima, Tamar Krugman und Tyson Howell. Positional cloning of a rye QTL responsible for water stress resistance in wheat based on radiation mapping and comparative genomics. United States Department of Agriculture, Januar 2016. http://dx.doi.org/10.32747/2016.7604265.bard.
Der volle Inhalt der QuelleLapidot, Moshe, und Vitaly Citovsky. molecular mechanism for the Tomato yellow leaf curl virus resistance at the ty-5 locus. United States Department of Agriculture, Januar 2016. http://dx.doi.org/10.32747/2016.7604274.bard.
Der volle Inhalt der QuelleLevin, Ilan, John W. Scott, Moshe Lapidot und Moshe Reuveni. Fine mapping, functional analysis and pyramiding of genes controlling begomovirus resistance in tomato. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7594406.bard.
Der volle Inhalt der QuelleJoel, Daniel M., Steven J. Knapp und Yaakov Tadmor. Genomic Approaches for Understanding Virulence and Resistance in the Sunflower-Orobanche Host-Parasite Interaction. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7592655.bard.
Der volle Inhalt der Quelle