Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Réservoir à hydrure métallique“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Réservoir à hydrure métallique" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Réservoir à hydrure métallique"
Contreras, Serge, René Lucas, Jean-Pierre Bastide, Pierre Claudy, Marcel Escorne, Annick Percheron-Guégan und Alain Mauger. „Irréversibilités magnétiques dans un hydrure métallique : Li2BeH4“. Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy 324, Nr. 10 (Mai 1997): 641–51. http://dx.doi.org/10.1016/s1251-8069(97)83183-1.
Der volle Inhalt der Quelle-VASSAL, Nathaly. „Perspectives des accumulateurs nickel/hydrure métallique à électrolyte polymère“. Revue de l'Electricité et de l'Electronique -, Nr. 08 (1999): 79. http://dx.doi.org/10.3845/ree.1999.092.
Der volle Inhalt der QuelleChaise, Albin, Philippe Marty, Patricia De Rango und Daniel Fruchart. „Modélisation de l'absorption et de la désorption de l'hydrogène dans un réservoir à hydrure de magnésium activé“. Mécanique & Industries 8, Nr. 3 (Mai 2007): 247–50. http://dx.doi.org/10.1051/meca:2007045.
Der volle Inhalt der QuelleDissertationen zum Thema "Réservoir à hydrure métallique"
Nolet, David. „Modélisation par la méthode des volumes finis des transferts de chaleur et de masse dans un hydrure métallique et exemple d'application dans un problème de fuite de réservoir“. Thèse, Université du Québec à Trois-Rivières, 2006. http://depot-e.uqtr.ca/1830/1/000131300.pdf.
Der volle Inhalt der QuelleSalque, Bruno. „Caractérisation mécanique de la respiration des hydrures pour uneconception optimisée des réservoirs de stockage de l’hydrogène par voie solide“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI026/document.
Der volle Inhalt der QuelleHydrogen can be used as a storage for electric energy. Hydrogen may become an energy vector, whichcould be used and transported easily. For the hydrogen sector to develop and mature, production, storageand consumption should be researched and optimized.This PhD is dedicated to hydrogen solid storage in metal hydride. This technology consists in usinga reversible and exothermic chemical reaction between an alloy and hydrogen. The hydrogen is capturedinside the metal lattice and can be released with the endothermic opposite reaction. The main factors whichimpact the performance of this technology are the choice of material, the heat flow management and thesystem used. Its main advantages lay on safety and energy compactness. Its main drawbacks come from theweight of the system. When the material absorb hydrogen, its volume increases. To contain this materialin an airtight environment, it is mandatory to know how stress develop on the container that contains thematerial. The cycles of dilatation and contraction of the material, when it is loading or unloading hydrogen,is called breathing.This research begins with a large spectrum presentation of hydrogen. Then comes a chemical and structuralcharacterization of the material : LaNiCoMnAl. Its Composition-Temperature-Pressure characteristicsare given. The material exhibits granular properties and is structurally characterize using laser grain sizing,shape measurement and X-Ray tomography. The typical length scale of LaNiCoMnAl particles is 20 micrometers.The third and fourth chapters are concerned with the experimental behavior. A sample is placed ina stress controlled environment where its density is measured during cycling. The other experiment places asample in a fixed volume. In that case, the stress exerted on the material is recorded and measured duringcycling. In the last chapter, numerical simulations using the Discrete Element Method are used. The materialis modeled by X shaped clusters and studied with different friction parameters and boundary conditions.Following other works done on other materials, these experiment showed a different behavior of LaNi-CoMnAl compared to Ti-Cr-V. During breathing, LaNiCoMnAl exhibits a decrease in density even whensubmitted to a relatively large stress. The rate at which the density decreases is lowered when the confinementpressure increases. When the material is placed in a fixed volume, the stress increases with increasingpoured mass. Numerical simulations show a decrease in density when the friction parameter is high enough.It validates the hypothesis that material parameters play a major role in the macroscopic behavior of metalhydride during breathing
Chaise, Albin. „Etude expérimentale et numérique de réservoirs d’hydrure de magnésium“. Grenoble 1, 2008. http://www.theses.fr/2008GRE10257.
Der volle Inhalt der QuelleThe target of this thesis was to study the feasibility of solid hydrogen storage in magnesium hydride (MgH2). At first, kinetic, thermodynamic and thermal properties of activated MgH2 powder have been investigated. Powders sorption kinetics are very sensitive to air exposure. The heat released by the very exothermic absorption reaction needs to be removed to load a tank with hydrogen in a reasonable time. In order to increase the thermal conductivity, a compression process of the material with expanded natural graphite (ENG) has been developed. Owing to that process, tough and drillable disks of MgH2 can be obtained with a reduced porosity and twice the volumetric storage capacity of the free powder bed. Handling those disks is easier and safer. Heat and mass transfer analysis has been carried out with a first small capacity tank (90 Nl), which is adapted to different experimental configurations. A second tank has been designed to fit disks of "MgH2 + ENG". This tank can absorbe 1200 Nl (105 g H. ) in 45 minutes, with a volumetric storage density equivalent to 480 bar compressed hydrogen. At the same time, a numerical modeling of MgH2 tanks has been achieved with Fluent® software. Numerical simulations of sorption process fit experiments and can be used for a better understanding of the storage material thermal and chemical behavior
Chabane, Djafar. „Gestion énergétique d'un ensemble réservoir d'hydrogène à hydrure et une pile à combustible PEM“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA010/document.
Der volle Inhalt der QuelleThis thesis deals with the phenomena inherent in the coupling of a hydrogen storage system based on metal hydrides and a fuel cell. The aim is to develop an optimal flow management law (electrical, fluidic, thermal).A detailed study was carried out on the various means of hydrogen production and the different methods of its storage. A large place is given to the characterization of the hydrides within the reservoir. This work allowed the development of a new characterization method for hydride tanks. The latter was experimentally carried out with charge and discharge processes carried out on three reservoirs containing different hydrides. Given the manufacturer's confidentiality, several data were not accessible experimentally. Thus, a numerical model of the hydride tank was carried out in the multiphysics Comsol environment. In order to model the thermal coupling between the fuel cell and the hydride tank, an OD model in the Matlab Simulink environment of a fuel cell, hydride tank and heat exchanger system was realized. These developments resulted in the proposal and study of two topologies for the management of heat exchanges between the fuel cell and the type AB hydride tank: series topology and parallel topology. In the series topology, the same heat transfer fluid circulates in the reservoir and in the fuel cell, which means that the two components have the same operating temperatures. This can cause difficulties in the operation of the POC which generally requires higher operating temperatures than those of the tank. The parallel topology provides the solution to this problem by offering the possibility of two distinct operating temperatures for the PàC and the tank
Rozans, Isabelle. „Etude thermodynamique et cinétique de l'hydruration et de la déshydratation des composés de type TRB#5 ET AB#2 en vue de leur utilisation dans les accumulateurs NI/MH“. Dijon, 1997. http://www.theses.fr/1997DIJOS037.
Der volle Inhalt der QuelleGondor, Germain. „Pour le stockage de l'hydrogène : Analyse thermodynamique de la formation d'hydrures métalliques et optimisation du remplissage d'un réservoir“. Phd thesis, Université de Franche-Comté, 2008. http://tel.archives-ouvertes.fr/tel-00782271.
Der volle Inhalt der QuelleMarcotte, Denis. „Conception d'une microsonde pour mesurer la concentration d'hydrogène dans un réservoir d'hydrure métallique“. Thèse, Université du Québec à Trois-Rivières, 2013. http://depot-e.uqtr.ca/7316/1/030621775.pdf.
Der volle Inhalt der QuelleSuer, Terry-Ann. „Partage du soufre et du platine entre un réservoir métallique et un réservoir silicaté lors de la formation du noyau terrestre“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066557/document.
Der volle Inhalt der QuelleMeasurements of the metal-silicate partitioning behavior of siderophile and volatile elements at the conditions of the deep primitive Earth can provide constraints on the mechanisms of terrestrial core formation. Experiments were conducted in a laser-heated diamond anvil cell to investigate the metal-silicate partitioning of sulfur and platinum at high pressures and temperatures. The partitioning behaviors were quantified post-experiment by high resolution NanoSIMS imaging. Sulfur was found to be moderately siderophile at core formation conditions and this, together with cosmochemical estimates, argue that it cannot be a major light element in the core. Accretion modeling with this new partitioning data implies that a heterogeneous accretion scenario can best explain the mantle and bulk Earth sulfur contents. The measured partitioning values for platinum are such that the mantle's platinum abundance can be sufficiently explained by core-mantle equilibration. Overall these results support the hypothesis that the cores of large impactors did not equilibrate fully with the magma ocean and metal could have sequestered to the Earth's core without leaving a record in the mantle. A late sulfide segregation event also likely played a role in establishing the observed mantle compositions. These findings help to further elucidate the accretion history of the Earth and core-mantle differentiation processes
Zeaiter, Ali. „Caractérisation et modélisation du comportement des alliages TiFe dédiés au stockage solide d'hydrogène. : Application à l'amélioration des performances d'un réservoir à hydrures métalliques“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD007/document.
Der volle Inhalt der QuelleHe environmental and economic problems caused by the use of petroleum products and the scarcity of these fossil fuels have led to the search for alternative sources of energy, which are renewable and respectful of the environment. Many of these sources are intermittent and require storage solutions. Hydrogen gas appears as a good candidate for this function. The hydrogen element, abundant in nature, has in its gaseous form a calorific value of 140 MJ / kg, i.e. 2.5 times that of gasoline. The 'hydrogen' sector is based on 3 pillars: production, storage, distribution and use. The storage of hydrogen is traditionally carried out by compression, under pressures ranging from a few bars to several hundreds, and by liquefaction at 20 K. The low density of these two types of storage (42 and 70 kgH2 / m3) associated with serious problems of safety and mechanical design, make solid storage in metal alloys particularly relevant for some applications. This solution favors the development of safe, compact design tanks with a high density of 120 kgH2/m3for TiFe alloys, for example. This type of hydride has been retained in this work because it has operating conditions of temperatures and pressures that are relatively close to ambient conditions, and also because it does not contain rare earth elements. The aim of this study is to characterize and model the hydriding/dehydriding behavior of the TiFe0.9Mn0.1 alloy, in order to improve its performance when it is integrated into a storage system. We first tried to characterize the alloy TiFe0.9Mn0.1 in powder form by describing it morphologically, chemically and thermodynamically. Then, two strategies of improvement were tested, the first one based on a mechanical treatment by planetary ball milling, the second considers a thermochemical treatment at given temperature and duration. Both strategies accelerated the process of powder activation, but the planetary ball milling significantly impaired the apparent desorption kinetics. The thermo-chemical treatment did not degrade the equilibrium domains and thus did not have an adverse effect on the reaction kinetics. The two most important parameters of this treatment, temperature and holding time, have been optimized. Other parameters remain to be refined.In addition to this experimental characterization, we have undertaken to describe the hydriding / dehydriding reaction macroscopically. The model allows to account for the thermodynamic response of the hydride within a reservoir. This work presents the results obtained on a tank containing 4 kg of TiFe0.9Mn0.1 powder when different hydrogen loading / unloading scenarios are considered: (i) loading / unloading under constant pressure, (ii) loading / unloading under an initial dose ( Method of Sievert), iii) loading / unloading under inlet or outlet flux of hydrogen. For each scenario, the effect of the coupling with a heat exchange system on the filling / emptying times is analyzed and optimal operating conditions are proposed. Finally, a sensitivity study using the Morris method is presented, and the most influential parameters of the model on the reaction rates are identified. The design of a solid hydrogen storage system requires a good understanding of the macroscopic as well as the microscopic aspects of the hydriding reaction and therefore requires further research to find new directions for improving its performance
Delhomme, Baptiste. „Couplage d'un réservoir d'hydrure de magnésium avec une source externe de chaleur“. Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00767941.
Der volle Inhalt der Quelle